: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Logic Symbols

Features

- I_{CC} and I_{OZ} reduced by 50%

■ Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
■ Useful as input or output port for microprocessors
■ Functionally identical to AC/ACT374
■ 3-STATE outputs for bus-oriented applications
■ Outputs source/sink 24 mA

- ACT574 has TTL-compatible inputs

Ordering Code:

Order Number	Package Number	Package Description
74AC574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body
74AC574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74AC574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74AC574PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide
74ACT574SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-01
74ACT574SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74ACT574MTC	MTC20	20-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 4.4mm Wide
74ACT574PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide

Connection Diagram

Pin Descriptions

Pin Names	Description
$\mathrm{D}_{0}-\mathrm{D}_{7}$	Data Inputs
CP	Clock Pulse Input
$\overline{\mathrm{OE}}$	3-STATE Output Enable Input
$\mathrm{O}_{0}-\mathrm{O}_{7}$	3-STATE Outputs

FACT ${ }^{T M}$ is a trademark of Fairchild Semiconductor Corporation.

Absolute Maximum Ratings(Note 1)		Recommended Operating
Supply Voltage (V_{CC})	-0.5 V to +7.0 V	Conditions
DC Input Diode Current (I_{IK})		Supply Voltage (V_{CC})
$\mathrm{V}_{1}=-0.5 \mathrm{~V}$	-20 mA	AC 2.0 V to 6.0 V
$\mathrm{V}_{\mathrm{l}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	+20 mA	ACT 4.5 V to 5.5 V
DC Input Voltage (V_{1})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	Input Voltage (V_{l}) $\left.\mathrm{V}^{(}\right) \quad \mathrm{V}$ to V_{CC}
DC Output Diode Current (lok)		Output Voltage (V_{O}) $\mathrm{O}^{\text {a }}$ to V_{CC}
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	-20 mA	Operating Temperature (T_{A}) $\quad-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\text {CC }}+0.5 \mathrm{~V}$	+20 mA	Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
DC Output Voltage (V_{O})	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	AC Devices
DC Output Source		$\mathrm{V}_{\text {IN }}$ from 30% to 70% of $\mathrm{V}_{\text {CC }}$
or Sink Current (1)	$\pm 50 \mathrm{~mA}$	
DC V_{CC} or Ground Current		Minimum Input Edge Rate ($\Delta \mathrm{V} / \Delta \mathrm{t}$)
Per Output Pin (licc or $\mathrm{I}_{\text {GND }}$)	$\pm 50 \mathrm{~mA}$	ACT Devices
Storage Temperature ($\mathrm{T}_{\text {STG }}$)	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
Junction Temperature (T_{J})		$\mathrm{V}_{\text {CC }} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$ ($125 \mathrm{mV} / \mathrm{ns}$
PDIP	$140^{\circ} \mathrm{C}$	Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, with- out exception, to ensure that the system design is reliable over its power supply, temperature, and outputinput loading variables. Fairchild does not recommend operation of FACTM circuits outside databook specifications.

DC Electrical Characteristics for AC

Symbol	Parameter	V_{Cc} (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
$\overline{\mathrm{V}_{\mathrm{IH}}}$	Minimum HIGH Level Input Voltage	$\begin{array}{r} \hline 3.0 \\ 4.5 \\ 5.5 \\ \hline \end{array}$	$\begin{array}{r} 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{array}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	$\begin{gathered} \hline 2.1 \\ 3.15 \\ 3.85 \\ \hline \end{gathered}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{IL}$	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{gathered} \hline 1.5 \\ 2.25 \\ 2.75 \\ \hline \end{gathered}$	$\begin{gathered} \hline 0.9 \\ 1.35 \\ 1.65 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 0.9 \\ & 1.35 \\ & 1.65 \\ & \hline \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 2.99 \\ & 4.49 \\ & 5.49 \\ & \hline \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 2.9 \\ & 4.4 \\ & 5.4 \\ & \hline \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & \hline 2.56 \\ & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 2.46 \\ & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \mathrm{I}_{\mathrm{OH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Level Output Voltage	$\begin{aligned} & \hline 3.0 \\ & 4.5 \\ & 5.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.002 \\ & 0.001 \\ & 0.001 \\ & \hline \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \\ & 0.1 \\ & \hline \end{aligned}$	V	lout $=50 \mu \mathrm{~A}$
		$\begin{aligned} & 3.0 \\ & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{LL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note 2) } \end{aligned}$
$\overline{\mathrm{IN}}$ (Note 4)	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{cc}}, \mathrm{GND}$
Ioz	Maximum 3-STATE Leakage Current	5.5		± 0.25	± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{I}}(\mathrm{OE})=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{~V}_{\mathrm{GND}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \\ & \hline \end{aligned}$
IoLD	Minimum Dynamic Output Current (Note 3)	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$
IOHD		5.5			-75	mA	$\mathrm{V}_{\mathrm{OHD}}=3.85 \mathrm{~V}$
ICC (Note 4)	Maximum Quiescent Supply Current	5.5		4.0	40.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms , one output loaded at a time. Note 4: I_{N} and $\mathrm{I}_{\mathrm{CC}} @ 3.0 \mathrm{~V}$ are guaranteed to be less than or equal to the respective limit @ $5.5 \mathrm{~V} \mathrm{~V}_{\mathrm{CC}}$.							

Symbol	Parameter	$V_{C C}$ (V)	$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Units	Conditions	
				Guaranteed Limits					
$\overline{\mathrm{V}} \mathrm{IH}$	Minimum HIGH Level Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
$\mathrm{V}_{\text {IL }}$	Maximum LOW Level Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$		$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{OUT}}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$	
V_{OH}	Minimum HIGH Level	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$		$\begin{aligned} & \hline 4.4 \\ & 5.4 \end{aligned}$	V	$\mathrm{I}_{\mathrm{OUT}}=-50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$		$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 5) \end{aligned}$	
V_{OL}	Maximum LOW Level Output Voltage	$\begin{array}{r} \hline 4.5 \\ 5.5 \end{array}$	$\begin{aligned} & 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$		$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\mathrm{OUT}}=50 \mu \mathrm{~A}$	
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$		$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \left.\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA} \text { (Note } 5\right) \end{aligned}$	
$\overline{\mathrm{IN}}$	Maximum Input Leakage Current	5.5		± 0.1		± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND}$	
I_{OZ}	Maximum 3-STATE Leakage Current	5.5		± 0.25		± 2.5	$\mu \mathrm{A}$	$\begin{aligned} & V_{I}=V_{I L}, V_{I H} \\ & V_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \text { GND } \end{aligned}$	
$\mathrm{I}_{\text {CCT }}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	0.6			1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{C C}-2.1 \mathrm{~V}$	
l JOLD	$\begin{aligned} & \hline \text { Minimum Dynamic } \\ & \text { Output Current (Note 6) } \end{aligned}$	5.5			75		mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$	
$\mathrm{I}_{\text {OHD }}$		5.5				-75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$	
I_{CC}	Maximum Quiescent Supply Current	5.5		4.0	40.0		$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{CC}}$ or GND	
Note 5: All Note 6: M AC	outputs loaded; thresholds on input aximum test duration 2.0 ms , one o lectrical Charact	iated aded tic	th output und a time. for A						
Symbol	Parameter		V_{CC} (V) (Note 7)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
				Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 75 \\ & 95 \end{aligned}$	$\begin{aligned} & \hline 112 \\ & 153 \end{aligned}$		$\begin{aligned} & \hline 60 \\ & 85 \end{aligned}$		MHz
$\overline{t_{\text {PLH }}}$	Propagation Delay CP to O_{n}		$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 3.5 \\ 2.0 \end{gathered}$	$\begin{aligned} & 8.5 \\ & 6.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \\ \hline \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 15.0 \\ & 11.0 \\ & \hline \end{aligned}$	ns
$\overline{t_{\text {PHL }}}$	Propagation Delay CP to O_{n}		$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 5.5 \end{aligned}$	$\begin{gathered} 12.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & 3.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} \hline 13.5 \\ 9.5 \end{gathered}$	ns
$\mathrm{t}_{\text {PZH }}$	Output Enable Time		$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \end{aligned}$	11.0 8.5	$\begin{aligned} & 2.5 \\ & 2.0 \end{aligned}$	$\begin{gathered} 12.0 \\ 9.0 \end{gathered}$	ns
$\overline{t_{\text {PZL }}}$	Output Enable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 6.5 \\ & 5.0 \end{aligned}$	10.5 8.0	$\begin{aligned} & \hline 3.0 \\ & 1.5 \end{aligned}$	$\begin{gathered} 11.5 \\ 9.0 \end{gathered}$	ns
$\overline{t_{\text {PHZ }}}$	Output Disable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.5 \\ & 6.0 \end{aligned}$	12.0 9.5	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	13.0 10.5	ns
$\overline{t_{\text {PLZ }}}$	Output Disable Time		$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 9.0 \\ & 7.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.0 \end{aligned}$	10.0 8.5	ns
Note 7: Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$									

AC Operating Requirements for AC

Symbol	Parameter	V_{Cc} （V） （Note 8）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum		
t_{s}	Set－Up Time，HIGH or LOW D_{n} to CP	$\begin{aligned} & 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} 0.5 \\ 0 \end{gathered}$	$\begin{aligned} & 2.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 3.0 \\ & 2.0 \end{aligned}$	ns
t_{H}	Hold Time，HIGH or LOW D_{n} to $C P$	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{gathered} \hline-0.5 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	ns
t_{W}	CP Pulse Width HIGH or LOW	$\begin{aligned} & \hline 3.3 \\ & 5.0 \end{aligned}$	$\begin{aligned} & \hline 3.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 5.0 \end{aligned}$	ns
Note 8：Voltage Range 3.3 is $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$						

AC Electrical Characteristics for ACT

Symbol	Parameter	V_{Cc} （V） （Note 9）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0	100	110		85		ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay CP to O_{n}	5.0	2.5	7.0	11.0	2.0	12.0	ns
$\mathrm{t}_{\text {PHL }}$	Propagation Delay CP to O_{n}	5.0	2.0	6.5	10.0	1.5	11.0	ns
${ }_{\text {tPZH }}$	Output Enable Time	5.0	2.0	6.4	9.5	1.5	10.0	ns
$\mathrm{t}_{\text {PZL }}$	Output Enable Time	5.0	2.0	6.0	9.0	1.5	10.0	ns
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	5.0	2.0	7.0	10.5	1.5	11.5	ns
$\mathrm{t}_{\text {PLZ }}$	Output Disable Time	5.0	2.0	5.5	8.5	1.5	9.0	ns

AC Operating Requirements for ACT

Symbol	Parameter	V_{Cc} （V） （Note 10）	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ	Guaranteed Minimum	
t_{s}	Set－Up Time，HIGH or LOW D_{n} to CP	5.0	1.5	2.5	ns
t_{H}	Hold Time，HIGH or LOW D_{n} to CP	5.0	－0．5	1.0	ns
t_{W}	CP Pulse Width HIGH or LOW	5.0	2.5	4.0	ns
Note 10：Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$ Capacitance					
Symbol	Parameter	Typ	Units	Conditions	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	4.5	pF	$\mathrm{V}_{\text {CC }}=$ OPEN	
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance	40.0	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$	

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
