: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74ACT574

OCTAL D-TYPE FLIP-FLOP WITH 3 STATE OUTPUTS (NON INVERTED)

- HIGH SPEED:
$\mathrm{f}_{\mathrm{MAX}}=270 \mathrm{MHz}$ (TYP.) at $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
- LOW POWER DISSIPATION:
$\mathrm{I}_{\mathrm{CC}}=4 \mu \mathrm{~A}\left(\mathrm{MAX}\right.$.) at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
- COMPATIBLE WITH TTL OUTPUTS $\mathrm{V}_{\mathrm{IH}}=2 \mathrm{~V}(\mathrm{MIN}),. \mathrm{V}_{\mathrm{IL}}=0.8 \mathrm{~V}(\mathrm{MAX}$.
- 50Ω TRANSMISSION LINE DRIVING CAPABILITY
- SYMMETRICAL OUTPUT IMPEDANCE: $\left|\mathrm{I}_{\mathrm{OH}}\right|=\mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\mathrm{MIN})$
- BALANCED PROPAGATION DELAYS:

$t_{\text {PLH }} \cong t_{\text {PHL }}$

- OPERATING VOLTAGE RANGE:
$\mathrm{V}_{\mathrm{CC}}(\mathrm{OPR})=4.5 \mathrm{~V}$ to 5.5 V
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 574
- IMPROVED LATCH-UP IMMUNITY

DESCRIPTION

The 74ACT574 is an advanced high-speed CMOS OCTAL D-TYPE FLIP-FLOP with 3 STATE OUTPUT NON INVERTING fabricated with sub-micron silicon gate and double-layer metal wiring $\mathrm{C}^{2} \mathrm{MOS}$ technology.
These 8 bit D-Type Flip-Flop are controlled by a clock input (CK) and an output enable input (OE). On the positive transition of the clock, the Q outputs will be set to the logic that were setup at the D inputs.
While the $(\overline{\mathrm{OE}})$ input is low, the 8 outputs will be in
PIN CONNECTION AND IEC LOGIC SYMBOLS

ORDER CODES

PACKAGE	TUBE	T \& R
DIP	74ACT574B	
SOP	74ACT574M	74ACT574MTR
TSSOP		74ACT574TTR

a normal logic state (high or low logic level) and while high level the outputs will be in a high impedance state.
The output control does not affect the internal operation of flip-flops; that is, the old data can be retained or the new data can be entered even while the outputs are off.
This device is designed to interface directly High Speed CMOS systems with TTL and NMOS components.
All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

INPUT AND OUTPUT EQUIVALENT CIRCUIT

PIN DESCRIPTION

PIN No	SYMBOL	NAME AND FUNCTION
1	$\overline{\mathrm{OE}}$	3-State Output Enable (Active LOW)
$2,3,4,5,6$, $7,8,9$	D0 to D7	Data Inputs
$12,13,14$, $15,16,17$, 18,19	Q0 to Q7	3-State Outputs
11	CK	Clock Input (LOW-to-HIGH Edge Trigger)
10	GND	Ground (OV)
20	VCC	Positive Supply Voltage

TRUTH TABLE

INPUTS			OUTPUT
$\overline{\mathbf{O E}}$	CK	\mathbf{D}	\mathbf{Q}
H	X	X	Z
L	L	X	NO CHANGE
L	-	L	L
L	-	H	H

X : Don't Care
Z : High Impedance

LOGIC DIAGRAM

This logic diagram has not be used to estimate propagation delays

ABSOLUTE MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	-0.5 to +7	V
$\mathrm{~V}_{\mathrm{I}}$	DC Input Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
$\mathrm{~V}_{\mathrm{O}}$	DC Output Voltage	-0.5 to $\mathrm{V}_{\mathrm{CC}}+0.5$	V
I_{IK}	DC Input Diode Current	± 20	mA
I_{OK}	DC Output Diode Current	± 20	mA
I_{O}	DC Output Current	± 50	mA
I_{CC} or $\mathrm{I}_{\mathrm{GND}}$	DC V_{CC} or Ground Current	± 400	mA
$\mathrm{~T}_{\text {stg }}$	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature (10 sec)	300	${ }^{\circ} \mathrm{C}$

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Value	Unit
V_{CC}	Supply Voltage	4.5 to 5.5	V
$\mathrm{~V}_{\mathrm{I}}$	Input Voltage	0 to V_{CC}	V
V_{O}	Output Voltage	0 to V_{CC}	V
T_{op}	Operating Temperature	-55 to 125	${ }^{\circ} \mathrm{C}$
$\mathrm{dt} / \mathrm{dv}$	Input Rise and Fall Time $\mathrm{V}_{\mathrm{CC}}=4.5$ to 5.5 V (note 1)	8	$\mathrm{~ns} / \mathrm{V}$

1) V_{IN} from 0.8 V to 2.0 V

DC SPECIFICATIONS

Symbol	Parameter	Test Condition		Value							Unit
		$\begin{aligned} & V_{c c} \\ & (\mathrm{~V}) \end{aligned}$		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
V_{IH}	High Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{gathered}$	2.0	1.5		2.0		2.0		V
		5.5		2.0	1.5		2.0		2.0		
V_{IL}	Low Level Input Voltage	4.5	$\begin{gathered} \mathrm{V}_{\mathrm{O}}=0.1 \mathrm{~V} \text { or } \\ \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{gathered}$		1.5	0.8		0.8		0.8	
		5.5			1.5	0.8		0.8		0.8	V
V_{OH}	High Level Output Voltage	4.5	$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	4.4	4.49		4.4		4.4		
		5.5	$\mathrm{I}_{\mathrm{O}}=-50 \mu \mathrm{~A}$	5.4	5.49		5.4		5.4		
		4.5	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	3.86			3.76		3.7		
		5.5	$\mathrm{I}_{\mathrm{O}}=-24 \mathrm{~mA}$	4.86			4.76		4.7		
$\mathrm{V}_{\text {OL }}$	Low Level Output	4.5	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.001	0.1		0.1		0.1	
	Voltage	5.5	$\mathrm{I}_{\mathrm{O}}=50 \mu \mathrm{~A}$		0.001	0.1		0.1		0.1	
		4.5	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$			0.36		0.44		0.5	
		5.5	$\mathrm{I}_{\mathrm{O}}=24 \mathrm{~mA}$			0.36		0.44		0.5	
1	Input Leakage Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {cc }}$ or GND			± 0.1		± 1		± 1	$\mu \mathrm{A}$
I_{OZ}	High Impedance Output Leakege Current	5.5	$\begin{gathered} V_{I}=V_{I H} \text { or } V_{\mathrm{IL}} \\ V_{O}=V_{C C} \text { or } G N D \end{gathered}$			± 0.5		± 5		± 5	$\mu \mathrm{A}$
$\mathrm{I}_{\text {CCT }}$	Max $\mathrm{ICC}^{\text {/Input }}$	5.5	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$		0.6			1.5		1.6	mA
I_{CC}	Quiescent Supply Current	5.5	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {CC }}$ or GND			4		40		80	$\mu \mathrm{A}$
IOLD	Dynamic Output	5	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ max					75		50	mA
$\mathrm{I}_{\text {OHD }}$	Current (note 1, 2)	5.5	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ min					-75		-50	mA

1) Maximum test duration 2 ms , one output loaded at time
2) Incident wave switching is guaranteed on trasmission lines with impedances as low as 50Ω

AC ELECTRICAL CHARACTERISTICS $\left(\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega\right.$, Input $\left.\mathrm{t}_{\mathrm{r}}=\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}\right)$

Symbol	Parameter	Test Condition		Value							Unit
		V_{cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{t}_{\text {PLH }} \mathrm{t}_{\text {PHL }}$	Propagation Delay Time CK to Q	$5.0^{(*)}$			5.0	10.0		11.0		11.0	ns
$t_{\text {PZL }} \mathrm{t}_{\text {PZH }}$	Output Enable Time	$5.0^{(*)}$			5.5	9.0		10.0		10.0	ns
$t_{\text {PLZ }} \mathrm{t}_{\text {PHZ }}$	Output Disable Time	$5.0^{(*)}$			5.0	8.5		9.0		9.0	ns
${ }^{\text {tw }}$	CK Pulse Width HIGH or LOW	$5.0^{(*)}$			1.5	$3 . .0$		4.0		4.0	ns
$\mathrm{t}_{\text {s }}$	Setup Time D to CK, HIGH or LOW	$5.0^{(*)}$			1.0	2.5		3.0		3.0	ns
$t_{\text {h }}$	Hold Time D to CK, HIGH or LOW	$5.0{ }^{*}$)			-1.0	2.5		3.0		3.0	ns
$\mathrm{f}_{\text {MAX }}$	Maximum CK Frequency	$5.0^{(*)}$		100	270		85		85		MHz

(*) Voltage range is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Test Condition		Value							Unit
		V_{Cc} (V)		$\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$			-40 to $85^{\circ} \mathrm{C}$		-55 to $125^{\circ} \mathrm{C}$		
				Min.	Typ.	Max.	Min.	Max.	Min.	Max.	
$\mathrm{C}_{\text {IN }}$	Input Capacitance	5.0			4						pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	5.0			8						pF
$\mathrm{C}_{\text {PD }}$	Power Dissipation Capacitance (note 1)	5.0	$\mathrm{f}_{\mathrm{IN}}=10 \mathrm{MHz}$		26						pF

1) $\mathrm{C}_{P D}$ is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $\mathrm{I}_{\mathrm{CC}(\mathrm{opr})}=\mathrm{C}_{\mathrm{PD}} \times \mathrm{V}_{\mathrm{CC}} \times \mathrm{f}_{\mathrm{IN}}+\mathrm{I}_{\mathrm{CC}} / \mathrm{n}$ (per circuit)

TEST CIRCUIT

TEST	SWITCH
$\mathrm{t}_{\text {PLH }}, \mathrm{t}_{\text {PHL }}$	Open
$\mathrm{t}_{\text {PZL }}$, $\mathrm{t}_{\text {PLZ }}$	$2 \mathrm{~V}_{\text {Cc }}$
$\mathrm{t}_{\text {PZH }}, \mathrm{t}_{\text {PHZ }}$	Open

$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$ or equivalent (includes jig and probe capacitance)
$R_{\mathrm{L}}=\mathrm{R}_{1}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\text {OUT }}$ of pulse generator (typically 50Ω)
WAVEFORM 1: PROPAGATION DELAYS, SETUP AND HOLD TIMES ($f=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 2: OUTPUT ENABLE AND DISABLE TIMES ($\mathfrak{f}=1 \mathrm{MHz} ; 50 \%$ duty cycle)

WAVEFORM 3: PULSE WIDTH (f=1MHz; 50\% duty cycle)

Plastic DIP-20 (0.25) MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
a1	0.254			0.010		
B	1.39		1.65	0.055		0.065
b		0.45			0.018	
b1		0.25			0.010	
D			25.4			1.000
E		8.5			0.335	
e		2.54			0.100	
e3		22.86			0.900	
F			7.1			0.280
I			3.93			0.155
L		3.3			0.130	
Z			1.34			0.053

SO-20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			2.65			0.104
a1	0.10		0.20	0.004		0.007
a2			2.45			0.096
b	0.35		0.49	0.013		0.019
b1	0.23		0.32	0.009		0.012
C		0.50			0.020	
c1	45 (typ.)					
D	12.60		13.00	0.496		0.512
E	10.00		10.65	0.393		0.419
e		1.27			0.050	
e3		11.43			0.450	
F	7.40		7.60	0.291		0.299
L	0.50		1.27	0.19		0.050
M			0.75			0.029
S	8 (max.)					

TSSOP20 MECHANICAL DATA

DIM.	mm			inch		
	MIN.	TYP.	MAX.	MIN.	TYP.	MAX.
A			1.1			0.433
A1	0.05	0.10	0.15	0.002	0.004	0.006
A2	0.85	0.9	0.95	0.335	0.354	0.374
b	0.19		0.30	0.0075		0.0118
C	0.09		0.2	0.0035		0.0079
D	6.4	6.5	6.6	0.252	0.256	0.260
E	6.25	6.4	6.5	0.246	0.252	0.256
E1	4.3	4.4	4.48	0.169	0.173	0.176
e		0.65 BSC			0.0256 BSC	
K	0°	4°	8°	0°	4°	8°
L	0.50	0.60	0.70	0.020	0.024	0.028

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.
© The ST logo is a registered trademark of STMicroelectronics
© 2001 STMicroelectronics - Printed in Italy - All Rights Reserved
STMicroelectronics GROUP OF COMPANIES
Australia - Brazil - China - Finland - France - Germany - Hong Kong - India - Italy - Japan - Malaysia - Malta - Morocco Singapore - Spain - Sweden - Switzerland - United Kingdom
© http://www.st.com

