imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74ACT818 8-Bit Diagnostic Register

FAIRCHILD

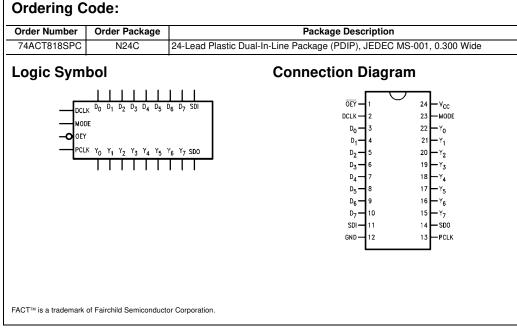
SEMICONDUCTOR

74ACT818 8-Bit Diagnostic Register

General Description

The ACT818 is a high-speed, general-purpose pipeline register with an on-board diagnostic register for performing serial diagnostics and/or writable control store loading.

The D-to-Y path provides an 8-bit parallel data path pipeline register for normal system operation. The diagnostic register can load parallel data to or from the pipeline register and can output data through the D input port (as in WCS loading).


The 8-bit diagnostic register has multiplexer inputs that select parallel inputs from the Y-port or adjacent bits in the diagnostic register to operate as a right-shift-only register. This register can then participate in a serial loop throughout the system where normal data, address, status and control registers are replaced with ACT818 diagnostic pipeline registers. The loop can be used to scan in a complete test routine starting point (Data, Address, etc.). Then after a specified number of machine cycles it scans out the results to be inspected for the expected results. WCS loading can be accomplished using the same technique. An instruction word can be serially shifted into the shadow register and written into the WCS RAM by enabling the D output.

Features

- On-line and off-line system diagnostics
- Swaps the contents of diagnostic register and output register
- Diagnostic register and diagnostic testing
- Cascadable for wide control words as used in micropro-
- gramming
- Edge-triggered D registers
- Outputs source/sink 24 mA
- ACT818 has TTL-compatible inputs
- ACT818 is functionally- and pin-compatible to AMD Am29818 and MMI 74S818

Applications

- · Register for microprogram control store
- · Status register
- · Data register
- Instruction register
- Interrupt mask register
- Pipeline register
- General purpose register
- · Parallel-serial/serial-parallel converter

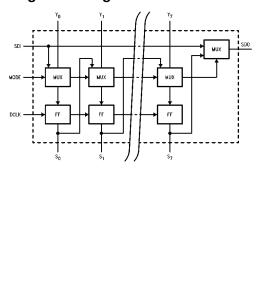
© 2000 Fairchild Semiconductor Corporation DS009801

Pin Descriptions

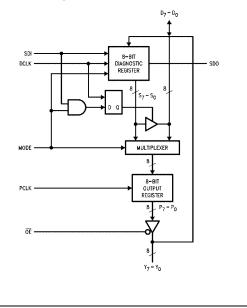
1	
Pin Names	Description
D ₀ -D ₇	Data Inputs
SDI	Serial Data Input
DCLK	Diagnostics Clock
MODE	Control Input
PCLK	Pipeline Register Clock
OEY	Output Enable Input
SDO	Serial Data Output
Y ₀ -Y ₇	Data Outputs

Functional Description

Data transfers into the diagnostic register occur on the LOW-to-HIGH transition of DCLK. Mode and SDI determine what data source will be loaded. The pipeline register is loaded on the LOW-to-HIGH transition of PCLK. Mode selects whether the data source is the data input or the diagnostic register output. Because of the independence of the clock inputs, data can be shifted in the diagnostic register via DCLK and loaded into the pipeline register from the data input via PCLK simultaneously, as long as no setup or hold times are violated. This simultaneous operation is legal.


Function Table

	Inp	uts		Outputs			Operation		
SDI	MODE	DCLK	PCLK	SDO	Diagnostic Reg.	Pipeline Reg.			
Х	L	\	Х	S7	SI <si 1,<="" td="" –=""><td>NA</td><td>Serial Shift; D7-D0 Disabled</td></si>	NA	Serial Shift; D7-D0 Disabled		
					SO <sd<sub>I</sd<sub>				
Х	L	Х	~	S7	NA	PI <di< td=""><td>Normal Load Pipeline Register</td></di<>	Normal Load Pipeline Register		
L	Н	\	Х	L	SI <yi< td=""><td>NA</td><td>Load Diagnostic Register from Y;</td></yi<>	NA	Load Diagnostic Register from Y;		
							DI Disabled		
Х	Н	Х	~	SDI	NA	PI <si< td=""><td>Load Pipeline Register from</td></si<>	Load Pipeline Register from		
							Diagnostic Register		
Н	Н	~	Х	Н	Hold	NA	Hold Diagnostic Register; DI		
							Enabled		


H = HIGH Voltage Level L = LOW Voltage Level

X = Immaterial $\sim = LOW-to-HIGH Clock Transition$

Diagnostic Register

Block Diagram

Absolute Maximum Ratings(Note 1)

Supply Voltage (V _{CC})	-0.5V to +7.0V
DC Input Diode Current (IIK)	
$V_{I} = -0.5V$	–20 mA
$V_{I} = V_{CC} + 0.5V$	+20 mA
DC Input Voltage (VI)	-0.5V to V _{CC} +0.5V
DC Output Diode Current (I _{OK})	
$V_{O} = -0.5V$	–20 mA
$V_{O} = V_{CC} + 0.5V$	+20 mA
DC Output Voltage (V _O)	-0.5V to V _{CC} + 0.5V
DC Output Source	
or Sink Current (I _O)	± 50 mA
DC V _{CC} or Ground Current	
per Output Pin (I _{CC} or I _{GND})	± 50 mA
Storage Temperature (T _{STG})	-65°C to +150°C
Junction Temperature (T _J)	
PDIP	140°C

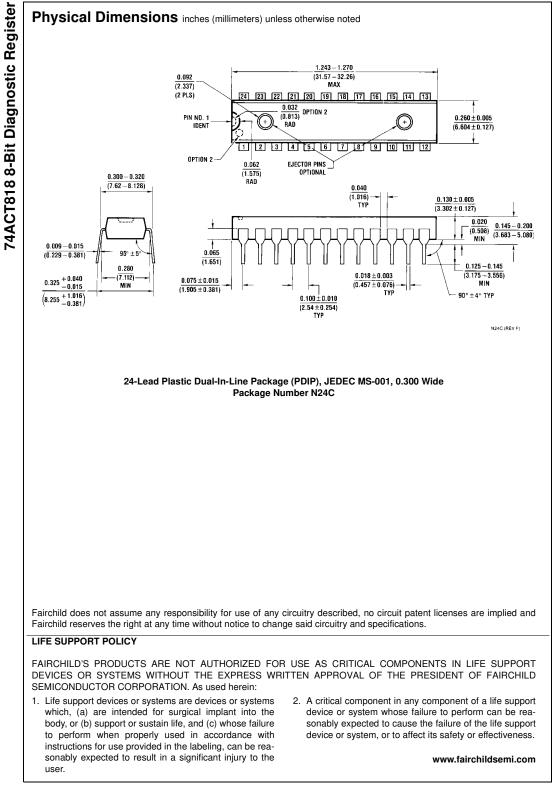
Recommended Operating Conditions

Supply Voltage (V _{CC})	4.5V to 5.5V
Input Voltage (V _I)	0V to V_{CC}
Output Voltage (V _O)	0V to V_{CC}
Operating Temperature (T _A)	$-40^{\circ}C$ to $+85^{\circ}C$
Minimum Input Edge Rate ($\Delta V/\Delta t$)	125 mV/ns
V _{IN} from 0.8V to 2.0V	
V _{CC} @ 4.5V, 5.5V	

74ACT818

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications.

DC Electrical Characteristics


Symbol	Parameter	v _{cc}	T _A = +25°C		$T_A = -40^{\circ}C \text{ to } +85^{\circ}C$	Units	Conditions	
Symbol	Faranieter	(V)	Typ Gu		aranteed Limits	Units		
V _{IH}	Minimum HIGH Level	4.5	1.5	2.0	2.0	v	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	2.0	2.0	v	or $V_{CC} - 0.1V$	
V _{IL}	Maximum LOW Level	4.5	1.5	0.8	0.8	v	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	0.8	0.8	v	or $V_{CC} - 0.1V$	
I _{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μA	$V_{IN} = V_{CC}$	
I _{OZ}	Maximum 3-STATE Leakage Current	5.5		±0.5	± 5.0	μA	$\overline{OE} = V_{IH}$ $V_{OUT} = 0V, V_{CC}$	
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	μA	$V_{IN} = V_{CC}$ or GND	
I _{CCT}	Maximum Additional I _{CC} /Input	5.5			1.5	mA	$V_{IN} = V_{CC} - 2.1V$ $V_{CC} = 5.5V$	
V _{OH}	Minimum HIGH Level Output Voltage,	4.5		3.86	3.76	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OH} = -24 \text{ mA}$	
	Y ₀ –Y ₇ Outputs	5.5		4.86	4.76	V	I _{OH} =-24 mA (Note 2	
	Minimum HIGH Level Output Voltage, D ₀ –D ₇ , SDO Outputs	4.5 5.5		3.86 4.86	3.76 4.76	v v	I _{OH} = -8 mA I _{OH} = -8 mA	
V _{OL}	Maximum LOW Level Output Voltage,	4.5		0.36	0.44	v	$V_{IN} = V_{IL} \text{ or } V_{IH}$ $I_{OL} = 24 \text{ mA}$	
	Y ₀ –Y ₇ Outputs	5.5		0.36	0.44	V	I _{OL} = 24 mA (Note 2)	
	Maximum LOW Level Output Voltage, D ₀ -D ₇ , SDO Outputs	4.5 5.5		0.36 0.36	0.44 0.44	V V	I _{OL} = 8 mA I _{OL} = 8 mA	
I _{OLD}	Minimum Dynamic Output Current Y ₀ -Y ₇ Outputs	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Minimum Dynamic Output Current Y ₀ -Y ₇ Outputs	5.5			-75	mA	V _{OHD} = 3.85V Min	
OLD	Minimum Dynamic Output Current D ₀ -D ₇ , SDO Outputs (Note 3)	5.5			32	mA	V _{OLD} = 1.65V Max	
онр	Minimum Dynamic Output Current D ₀ -D ₇ , SDO Outputs (Note 3)	5.5			-32	mA	V _{OHD} = 3.85V Min	

Note 2: All outputs loaded; thresholds on input associated with output u Note 3: Test load 50 pF, 500Ω to ground.

Symbol	Parameter	V _{CC} (V)	T _A = +25°C C _L = 50 pF			T _A = −40°C to +85°C C _L = 50 pF		Units
-		(Note 4)	Min	Тур	Max	Min	Max	
t _{PHL}	Propagation Delay PCLK to Y	5.0	3.0	6.0	9.0	2.5	9.5	ns
t _{PLH}	Propagation Delay PCLK to Y	5.0	3.0	6.5	9.0	2.5	10.0	ns
t _{PHL}	Propagation Delay MODE to SDO	5.0	4.0	8.0	11.0	3.5	12.0	ns
t _{PLH}	Propagation Delay MODE to SDO	5.0	4.0	8.0	11.5	4.0	12.5	ns
t _{PHL}	Propagation Delay SDI to SDO	5.0	3.5	7.5	10.5	3.0	12.0	ns
t _{PLH}	Propagation Delay SDI to SDO	5.0	3.5	7.5	10.5	3.5	12.0	ns
t _{PHL}	Propagation Delay DCLK to SDO	5.0	4.5	9.0	12.5	4.0	14.0	ns
t _{PLH}	Propagation Delay DCLK to SDO	5.0	4.5	9.5	13.0	4.0	14.5	ns
t _{PZL}	Output Enable Time OEY to Y _n	5.0	2.5	6.0	9.0	2.5	10.0	ns
t _{PLZ}	Output Disable Time OEY to Y _n	5.0	1.5	5.5	8.0	1.0	9.0	ns
t _{PZL}	Output Enable Time DCLK to D _n	5.0	3.0	8.0	12.0	3.0	13.5	ns
t _{PLZ}	Output Disable Time DCLK to D _n	5.0	2.0	8.5	11.0	1.5	12.0	ns
t _{PZH}	Output Enable Time OEY to Y _n	5.0	3.0	8.0	10.0	2.5	11.0	ns
t _{PHZ}	Output Disable Time OEY to Y _n	5.0	2.5	9.0	11.0	2.0	11.5	ns
t _{PZH}	Output Enable Time DCLK to D _n	5.0	3.0	6.5	11.5	3.0	13.0	ns
t _{PHZ}	Output Disable Time DCLK to D _n	5.0	3.0	7.5	12.0	2.0	13.0	ns

Note 4: Voltage Range 5.0 is 5.0V \pm 0.5V.

		V	сс	TA	= +25°C	$T_A = -40^{\circ}C$ to $+85^{\circ}C$	
Symbol	Parameter		v)		= 50 pF	C _L = 50 pF	Units
0,			te 5)	Тур		uaranteed Minimum	-
s	Setup Time		-			1	
	D to PCLK	5	.0	1.0	4.0	5.0	ns
Н	Hold Time						
	D to PCLK	5	.0	0.0	1.0	1.0	ns
t _H	Setup Time	_					
	MODE to PCLK	5	.0	2.5	4.5	5.5	ns
t _H	Hold Time	_					
	MODE to PCLK	5	.0	-1.0	0.0	0.0	ns
s	Setup Time						
0	Y to DCLK	5	.0	0.5	2.5	2.5	ns
s	Hold Time						
3	Y to DCLK	5	.0	0	1.0	1.5	ns
ts	Setup Time						1
5	MODE to DCLK	5	.0	2.0	4.0	4.0	ns
· .	Hold Time						
tн	MODE to DCLK	5	.0	-0.5	1.0	1.0	ns
					_		
ts	Setup Time	5	.0	2.0	3.5	4.5	ns
	SDI to DCLK						
t _H	Hold Time	5	.0	-0.5	1.0	1.0	ns
	SDI to DCLK				-		
ts	Setup Time	5	.0 6.0	9.0	10.5	ns	
	DCLK to PCLK						
ts	Setup Time	5	5.0	6.0	11.0	11.5	ns
	PCLK to DCLK	Ű				1110	
tw	Pulse Width	5	.0	2.0	3.0	3.0	ns
	PCLK HIGH or LOW	5	.0 2.0		5.0	0.0	113
t _W	Pulse Width	5	i.0	2.0	3.0	3.0	ns
	DCLK HIGH or LOW	, i i i i i i i i i i i i i i i i i i i		2.0	0.0	0.0	113
Capac Symbol	Parameter		1	Tvn	Units	Conditions	
C _{IN}	Input Capacitance			Тур 4.5	pF	V _{CC} = OPEN	
	Power Dissipation Capacitance			4.3 20	pF	$V_{CC} = 5.0V$	
PD	Fower Dissipation Capacitance	;		20	μr	V _{CC} = 5.0V	

