

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

June 1991 Revised May 2005

74ACTQ16374 16-Bit D-Type Flip-Flop with 3-STATE Outputs

General Description

The ACTQ16374 contains sixteen non-inverting D-type flipflops with 3-STATE outputs and is intended for bus oriented applications. The device is byte controlled. A buffered clock (CP) and Output Enable (OE) are common to each byte and can be shorted together for full 16-bit operation.

The ACTQ16245 utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improved dynamic threshold performance. FACT Quiet Series™ features GTO™ output control for superior performance.

Features

- Utilizes Fairchild FACT Quiet Series technology
- Guaranteed simultaneous switching noise level and dynamic threshold performance
- Guaranteed pin-to-pin output skew
- Buffered Positive edge-triggered clock
- Separate control logic for each byte
- 16-bit version of the ACTQ374
- Outputs source/sink 24 mA
- Additional specs for Multiple Output Switching
- Output loadings specs for both 50 pF and 250 pF loads

Ordering Code:

Order Number	Package Number	Package Description
74ACTQ16374SSC	MS48A	48-Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ACTQ16374MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide

Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code.

Connection Diagram

FACT™, FACT Quiet Series™ and GTO™ are trademarks of Fairchild Semiconductor Corporation.

Inputs

Outputs

I₀–I₁₅

 $O_0 - O_{15}$

Functional Description

The ACTQ16374 consists of sixteen edge-triggered flipflops with individual D-type inputs and 3-STATE true outputs. The device is byte controlled with each byte functioning identically, but independent of the other. The control pins can be shorted together to obtain full 16-bit operation. Each byte has a buffered clock and buffered Output Enable common to all flip-flops within that byte. The description which follows applies to each byte. Each flip-flop will store the state of their individual D inputs that meet the setup and hold time requirements on the LOW-to-HIGH Clock (CP_n) transition. With the Output Enable $(\overline{\mathrm{OE}}_n)$ LOW, the contents of the flip-flops are available at the outputs. When $\overline{\mathrm{OE}}_n$ is HIGH, the outputs go to the high impedance state. Operation of the OE_n input does not affect the state of the flip-flops.

Truth Tables

	Inputs		Outputs
CP ₁	OE ₁	I ₀ –I ₇	O ₀ -O ₇
~	L	Н	Н
~	L	L	L
L	L	X	(Previous)
Х	Н	Χ	Z

	Inputs	Outputs	
CP ₂	OE ₂	I ₈ –I ₁₅	O ₈ -O ₁₅
~	L	Н	Н
~	L	L	L
L	L	Χ	(Previous)
Х	Н	Х	Z

H = HIGH Voltage Level

Logic Diagrams

L = LOW Voltage Level

X= Immaterial

Z = HIGH Impedance

 ^{∠ =} LOW-to-HIGH Transition

Absolute Maximum Ratings(Note 1)

Supply Voltage (V_{CC}) -0.5V to +7.0V

DC Input Diode Current (I_{IK})

DC Output Diode Current (I_{OK})

 $\begin{aligned} \text{V}_{\text{O}} &= -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{O}} &= \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \end{aligned}$

DC Output Voltage (V_O) -0.5V to V_{CC} + 0.5V DC Output Source/Sink Current (I_O) ± 50 mA

DC V_{CC} or Ground Current

per Output Pin \pm 50 mA Storage Temperature $-65^{\circ}\text{C to} + 150^{\circ}\text{C}$

Recommended Operating Conditions

 V_{IN} from 0.8V to 2.0V

V_{CC} @ 4.5V, 5.5V

Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACTTM circuits outside databook specifications.

DC Electrical Characteristics

0	Devemeter	V _{CC}	T _A = +25°C		$T_A = -40$ °C to $+85$ °C	11-14-	Conditions	
Symbol	Parameter	(V) Typ Guaranteed Limit		ranteed Limits	Units	Conditions		
V _{IH}	Minimum HIGH	4.5	1.5	2.0	2.0	V	V _{OUT} = 0.1V	
	Input Voltage	5.5	1.5	2.0	2.0	V	or V _{CC} = 0.1V	
V _{IL}	Maximum LOW	4.5	1.5	0.8	0.8	V	$V_{OUT} = 0.1V$	
	Input Voltage	5.5	1.5	0.8	0.8	v	or V _{CC} - 0.1V	
V _{OH}	Minimum HIGH	4.5	4.49	4.4	4.4	V	$I_{OUT} = -50 \mu A$	
	Output Voltage	5.5	5.49	5.4	5.4	v		
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		3.86	3.76	V	$I_{OH} = -24 \text{ mA}$	
		5.5		4.86	4.76		$I_{OH} = -24 \text{ mA (Note 2)}$	
V _{OL}	Maximum LOW	4.5	0.001	0.1	0.1	V	$I_{OUT} = 50 \mu A$	
	Output Voltage	5.5	0.001	0.1	0.1	v		
							$V_{IN} = V_{IL}$ or V_{IH}	
		4.5		0.36	0.44	V	$I_{OL} = 24 \text{ mA}$	
		5.5		0.36	0.44		I _{OL} = 24 mA (Note 2)	
loz	Maximum 3-STATE	5.5		± 0.5	± 5.0	μА	$V_I = V_{IL}, \ V_{IH}$	
	Leakage Current						$V_O = V_{CC}$, GND	
I _{IN}	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	μΑ	$V_I = V_{CC}$, GND	
I _{CCT}	Maximum I _{CC} /Input	5.5	0.6		1.5	mA	$V_{I} = V_{CC} - 2.1V$	
I _{CC}	Maximum Quiescent Supply Current	5.5		8.0	80.0	μΑ	$V_{IN} = V_{CC}$ or GND	
I _{OLD}	Minimum Dynamic	5.5			75	mA	V _{OLD} = 1.65V Max	
I _{OHD}	Output Current (Note 3)	3.3			-75	mA	V _{OHD} = 3.85V Min	
V _{OLP}	Quiet Output Maximum	5.0	0.5	0.8		V	Figure 1, Figure 2	
	Dynamic V _{OL}						(Note 5)(Note 6)	
V _{OLV}	Quiet Output	5.0	-0.5	-1.0		V	Figure 1, Figure 2	
	Minimum Dynamic V _{OL}	3.0	0.5	1.0		•	(Note 5)(Note 6)	
V _{OHP}	Maximum Overshoot	5.0	V _{OH} + 1.0	V _{OH} + 1.5		V	Figure 1, Figure 2	
							(Note 4)(Note 6)	
V _{OHV}	Minimum V _{CC} Droop	5.0	V _{OH} - 1.0	V _{OH} – 1.8		V	Figure 1, Figure 2	
							(Note 4)(Note 6)	
V_{IHD}	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	(Note 4)(Note 7)	
V_{ILD}	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	(Note 4)(Note 7)	

Note 2: All outputs loaded; thresholds associated with output under test.

 $[\]textbf{Note 3:} \ \text{Maximum test duration 2.0 ms; one output loaded at a time.}$

Note 4: Worst case package.

Note 5: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched LOW and one output held LOW.

Note 6: Maximum number of outputs that can switch simultaneously is n. (n - 1) outputs are switched HIGH and one output held HIGH.

Note 7: Maximum number of data inputs (n) switching. (n - 1) input switching 0V to 3V (ACTQ). Input under test switching 3V to threshold (V_{ILD}).

AC Electrical Characteristics

		V _{CC}	T _A = +25°C C _L = 50 pF			$T_A = -40$ °C to +85°C $C_L = 50$ pF		Units
Symbol	Parameter	(V)						
		(Note 8)	Min	Тур	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	5.0	71			67		MHz
t _{PLH}	Propagation Delay	5.0	3.1	5.3	7.9	3.1	8.4	
t _{PHL}	CP to O _n		3.0	5.1	7.3	3.0	7.8	ns
t _{PZH}	Output Enable Time	5.0	2.5	4.7	7.4	2.5	7.9	
t_{PZL}			3.0	5.4	8.0	2.0	8.5	ns
t _{PHZ}	Output Disable Time	5.0	2.1	5.1	7.9	2.1	8.2	ns
t_{PLZ}			2.0	4.8	7.4	2.0	7.9	115

Note 8: Voltage Range 5.0 is $5.0V \pm 0.5V$.

AC Operating Requirements

Symbol	Parameter	V _{cc} (V)	$T_A = +25$ °C $C_L = 50 \text{ pF}$		$T_A = -40$ °C to +85°C $C_L = 50$ pF	Units	
		(Note 9)	Тур Сі		ranteed Limits	ĺ	
t _S	Setup Time, HIGH or LOW Input to Clock	5.0	0.7	3.0	3.0	ns	
t _H	Hold Time, HIGH or LOW Input to Clock	5.0	0.8	1.0	1.0	ns	
t _W	CP Pulse Width, HIGH or LOW	5.0	1.5	5.0	5.0	ns	

Note 9: Voltage Range 5.0 is $5.0V \pm 0.5V$.

Extended AC Electrical Characteristics

Symbol	Parameter	Î	$T_A = -40$ °C to +85 °C $C_L = 50$ pF 16 Outputs Switching (Note 10)		$T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 250 \text{ pF}$ (Note 11)		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	4.7		13.3	6.6	16.3	ns
t _{PHL}	Data to Output	4.6		11.4	6.4	15.5	115
t _{PZH}	Output Enable Time	3.5		10.4	(Note 13)		ns
t_{PZL}		3.8		10.9			
t _{PHZ}	Output Disable Time	3.4		8.5	(Note 14)		ns
t_{PLZ}		3.1		8.1			
toshl	Pin to Pin Skew			1.3			
(Note 12)	HL Data to Output			1.3			ns
toslh	Pin to Pin Skew			2.1			
(Note 12)	LH Data to Output			۷.۱			ns
t _{OST}	Pin to Pin Skew			4.0			ns
(Note 12)	LH/HL Data to Output			7.0			115

Note 10: This specification is guaranteed but not tested. The limits apply to propagation delays for all paths described switching in phase (i.e., all LOW-to-HIGH, HIGH-to-LOW, etc.).

Note 11: This specification is guaranteed but not tested. The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load. This specification pertains to single output switching only.

Note 12: Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device. The specification applies to any outputs switching HIGH-to-LOW (toSHL), LOW-to-HIGH (toSLH), or any combination switching LOW-to-HIGH and/or HIGH-to-LOW (toSHL).

Note 13: 3-STATE delays are load dominated and have been excluded from the datasheet.

Note 14: The Output Disable Time is dominated by the RC network (500Ω, 250 pF) on the output and has been excluded from the datasheet.

Capacitance

Symbol	Parameter	Тур	Units	Conditions
C _{IN}	Input Capacitance	4.5	pF	$V_{CC} = 5.0V$
C _{PD}	Power Dissipation Capacitance	30	pF	$V_{CC} = 5.0V$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.

Equipment:

Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture

Tektronics Model 7854 Oscilloscope

Procedure:

- 1. Verify Test Fixture Loading: Standard Load 50 pF, 500Ω
- 2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
- 3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage.
- Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement.
- 5. Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

 $t_f = 3 \text{ ns, skew} < 150 \text{ ps.}$

FIGURE 1. Quiet Output Noise Voltage Waveforms

V_{OLP}/V_{OLV} and V_{OHP}/V_{OHV}:

- · Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure $V_{\mbox{\scriptsize OHP}}$ and $V_{\mbox{\scriptsize OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

V_{ILD} and V_{IHD}:

- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL} , until the output begins to oscillate or step out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds \boldsymbol{V}_{IL} limits, or on output HIGH levels that exceed VIH limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}.
- Next decrease the input HIGH voltage level on the, V_{IH} , until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds \mathbf{V}_{IL} limits, or on output HIGH levels that exceed $V_{\mbox{\scriptsize IH}}$ limits. The input HIGH voltage level at which oscillation occurs is defined as VIHD.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 12.50±0.10 0.40 TYP -B-10±0,10 99 9.20 B.10 4.05 O.2 C B A ALL LEAD TIPS PIN #1 IDENT LAND PATTERN RECOMMENDATION O.1 C ALL LEAD TIPS SEE DETAIL A 0.90+0.15 0.09-0.20 0.10±0.05 0.50 0.17-0.27 ♦ 0.13\(\old{\text{0}} \) A B\(\old{\text{S}} \) C\(\old{\text{S}} \) 12.00' TOP & BOTTOM DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES A. CONFORMS TO JEDEC REGISTRATION MO-153, VARIATION ED, DATE 4/97. B. DIMENSIONS ARE IN MILLIMETERS. SEATING PLANE 0.60±0.10 C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. D. DIMENSIONS AND TOLERANCES PER ANSI Y14.5M, 1982. DETAIL A MTD48REVC

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com