: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Logic Symbol

Pin Descriptions

Pin Names	Description
$\overline{\mathrm{OE}}_{\mathrm{n}}$	Output Enable Input (Active LOW)
CP_{n}	Clock Pulse Input
$\mathrm{I}_{0}-\mathrm{I}_{15}$	Inputs
$\mathrm{O}_{0}-\mathrm{O}_{15}$	Outputs

Features

- Utilizes Fairchild FACT Quiet Series technology
- Guaranteed simultaneous switching noise level and dynamic threshold performance
■ Guaranteed pin-to-pin output skew
- Buffered Positive edge-triggered clock
- Separate control logic for each byte

■ 16-bit version of the ACTQ374
■ Outputs source/sink 24 mA
■ Additional specs for Multiple Output Switching
■ Output loadings specs for both 50 pF and 250 pF loads

Ordering Code:

Order Number	Package Number	Package Description
74ACTQ16374SSC	MS48A	48 -Lead Small Shrink Outline Package (SSOP), JEDEC MO-118, 0.300" Wide
74ACTQ16374MTD	MTD48	48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide
Device also available in Tape and Reel. Specify by appending suffix letter " X " to the ordering code.		

Connection Diagram

$\overline{0 E}_{1}-1$	48
$\mathrm{o}_{0}-2$	47
00^{-3}	46
OND-4	45
$\mathrm{O}_{2}-5$	44
$\mathrm{O}_{3}-6$	43
$v_{C C}-7$	42
$\mathrm{O}_{4}-8$	41
$0_{5}-9$	40
GND-10	39
$0_{6}-11$	38
$0,-12$	37
$0_{8}-13$	36
$0_{9}-14$	35
OND-15	34
$00_{10}-16$	33
$0_{11}-17$	32
$\mathrm{v}_{\mathrm{CC}}-18$	31
$0_{12}-19$	30
$0_{13}-20$	29
CND-21	28
$0,14-22$	27
$0_{15}-23$	26
$\overline{0 E}_{2}-{ }^{24}$	25

[^0]

Absolute Maximum Ratings（Note 1）		Recommended Operating Conditions
Supply Voltage（ V_{CC} ）	-0.5 V to +7.0 V	
DC Input Diode Current（ $\mathrm{I}_{\text {IK }}$ ）		Supply Voltage（ V_{CC} ） 4.5 V to 5.5 V
$\mathrm{V}_{\mathrm{I}}=-0.5 \mathrm{~V}$	－20 mA	Input Voltage（ V_{l} ） $\mathrm{V}^{\text {V }}$ to V_{CC}
$\mathrm{V}_{1}=\mathrm{V}_{C C}+0.5 \mathrm{~V}$	＋20 mA	Output Voltage（ V_{O} ） 0 V to V_{CC}
DC Output Diode Current（ $\mathrm{l}_{\mathrm{OK} \text { ）}}$		Operating Temperature（ T_{A} ）$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$
$\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$	－20 mA	Minimum Input Edge Rate（ $\Delta \mathrm{V} / \Delta \mathrm{t}$ ） $125 \mathrm{mV} / \mathrm{ns}$
$\mathrm{V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	＋20 mA	$\mathrm{V}_{\text {IN }}$ from 0.8 V to 2.0 V
DC Output Voltage（ V_{O} ）	-0.5 V to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$	$\mathrm{V}_{\mathrm{CC}} @ 4.5 \mathrm{~V}, 5.5 \mathrm{~V}$
DC Output Source／Sink Current（10）	$\pm 50 \mathrm{~mA}$	Note 1：Absolute maximum ratings are those values beyond which damage
DC V ${ }_{\text {CC }}$ or Ground Current per Output Pin	$\pm 50 \mathrm{~mA}$	to the device may occur．The databook specifications should be met，with－ out exception to ensure that the system design is reliable over its power supply，temperature，and output／input loading variables．Fairchild does not
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	recommend operation of FACT ${ }^{\text {TM }}$ circuits outside databook specifications．

DC Electrical Characteristics

Symbol	Parameter	V_{cc} （V）	$\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}$		$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	Units	Conditions
			Typ	Guaranteed Limits			
V_{IH}	Minimum HIGH Input Voltage	$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{IL}	Maximum LOW Input Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	$\begin{aligned} & \hline 0.8 \\ & 0.8 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0.1 \mathrm{~V} \\ & \text { or } \mathrm{V}_{\mathrm{CC}}-0.1 \mathrm{~V} \end{aligned}$
V_{OH}	Minimum HIGH Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 4.49 \\ & 5.49 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 5.4 \end{aligned}$	V	IOUT $=-50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 3.86 \\ & 4.86 \end{aligned}$	$\begin{aligned} & 3.76 \\ & 4.76 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Maximum LOW Output Voltage	$\begin{aligned} & \hline 4.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 0.001 \\ & 0.001 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	V	$\mathrm{I}_{\text {OUT }}=50 \mu \mathrm{~A}$
		$\begin{aligned} & 4.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 0.36 \\ & 0.36 \end{aligned}$	$\begin{aligned} & 0.44 \\ & 0.44 \end{aligned}$	V	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=\mathrm{V}_{\mathrm{IL}} \text { or } \mathrm{V}_{\mathrm{IH}} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} \\ & \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}(\text { Note } 2) \end{aligned}$
$\overline{\mathrm{l}} \mathrm{O}$	Maximum 3－STATE Leakage Current	5.5		± 0.5	± 5.0	$\mu \mathrm{A}$	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}, \mathrm{~V}_{\mathrm{IH}} \\ & \mathrm{~V}_{\mathrm{O}}=\mathrm{V}_{\mathrm{CC}}, \mathrm{GND} \end{aligned}$
1 IN	Maximum Input Leakage Current	5.5		± 0.1	± 1.0	$\mu \mathrm{A}$	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ ，GND
$\mathrm{I}_{\text {CCT }}$	Maximum I ${ }_{\text {CC }} /$ Input	5.5	0.6		1.5	mA	$\mathrm{V}_{1}=\mathrm{V}_{\text {CC }}-2.1 \mathrm{~V}$
Icc	Maximum Quiescent Supply Current	5.5		8.0	80.0	$\mu \mathrm{A}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\text {CC }}$ or GND
loLd	Minimum Dynamic	5.5			75	mA	$\mathrm{V}_{\text {OLD }}=1.65 \mathrm{~V}$ Max
${ }^{\text {OHD }}$	Output Current（Note 3）				－75	mA	$\mathrm{V}_{\text {OHD }}=3.85 \mathrm{~V}$ Min
$\mathrm{V}_{\text {OLP }}$	Quiet Output Maximum Dynamic V_{OL}	5.0	0.5	0.8		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\mathrm{V}_{\text {OLV }}$	Quiet Output Minimum Dynamic V_{OL}	5.0	－0．5	－1．0		V	Figure 1，Figure 2 （Note 5）（Note 6）
$\mathrm{V}_{\text {OHP }}$	Maximum Overshoot	5.0	$\mathrm{V}_{\mathrm{OH}}+1.0$	$\mathrm{V}_{\mathrm{OH}}+1.5$		V	Figure 1，Figure 2 （Note 4）（Note 6）
$\mathrm{V}_{\mathrm{OHV}}$	Minimum V ${ }_{\text {cc }}$ Droop	5.0	$\mathrm{V}_{\mathrm{OH}}-1.0$	$\mathrm{V}_{\mathrm{OH}}-1.8$		V	Figure 1，Figure 2 （Note 4）（Note 6）
$\mathrm{V}_{\text {IHD }}$	Minimum HIGH Dynamic Input Voltage Level	5.0	1.7	2.0		V	（Note 4）（Note 7）
$\mathrm{V}_{\text {ILD }}$	Maximum LOW Dynamic Input Voltage Level	5.0	1.2	0.8		V	（Note 4）（Note 7）
Note 2： Note 3： Note 4： Note 5： Note 6： Note 7：	outputs loaded；thresholds associated with output aximum test duration 2.0 ms ；one output loaded at orst case package． aximum number of outputs that can switch simultan aximum number of outputs that can switch simultan aximum number of data inputs（ n ）switching．（ $n-1$ ）	ime． usly is usly is put sw	（ $n-1$ ）outpu （ $n-1$ ）outpu ing 0 V to 3 V	uts are switch uts are switch （ACTQ）．Inp	ed LOW and one output ed HIGH and one output ut under test switching 3	eld LOW held HIG to thres	hold（VILD）．

Symbol	Parameter	V_{CC} (V) (Note 8)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
			Min	Typ	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Clock Frequency	5.0	71			67		MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay CP to O_{n}	5.0	$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 5.3 \\ & 5.1 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.3 \end{aligned}$	$\begin{aligned} & 3.1 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 8.4 \\ & 7.8 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZZL}} \end{aligned}$	Output Enable Time	5.0	$\begin{aligned} & 2.5 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 4.7 \\ & 5.4 \end{aligned}$	$\begin{aligned} & \hline 7.4 \\ & 8.0 \end{aligned}$	$\begin{aligned} & \hline 2.5 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 8.5 \end{aligned}$	ns
$\begin{aligned} & t_{\text {PHZ }} \\ & t_{\text {PLZ }} \end{aligned}$	Output Disable Time	5.0	$\begin{aligned} & \hline 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 5.1 \\ & 4.8 \end{aligned}$	$\begin{aligned} & 7.9 \\ & 7.4 \end{aligned}$	$\begin{aligned} & 2.1 \\ & 2.0 \end{aligned}$	$\begin{aligned} & \hline 8.2 \\ & 7.9 \end{aligned}$	ns

AC Operating Requirements

Symbol	Parameter	V_{CC} (V) (Note 9)	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$	Units
			Typ		anteed Limits	
t_{S}	Setup Time, HIGH or LOW Input to Clock	5.0	0.7	3.0	3.0	ns
t_{H}	Hold Time, HIGH or LOW Input to Clock	5.0	0.8	1.0	1.0	ns
$t_{\text {W }}$	CP Pulse Width, HIGH or LOW	5.0	1.5	5.0	5.0	ns

Note 9: Voltage Range 5.0 is $5.0 \mathrm{~V} \pm 0.5 \mathrm{~V}$.

Extended AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$ 16 Outputs Switching （Note 10）			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C} \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=250 \mathrm{pF} \\ \text { (Note 11) } \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation Delay Data to Output	$\begin{aligned} & 4.7 \\ & 4.6 \end{aligned}$		$\begin{aligned} & 13.3 \\ & 11.4 \end{aligned}$	$\begin{aligned} & \hline 6.6 \\ & 6.4 \end{aligned}$	$\begin{aligned} & 16.3 \\ & 15.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZL}} \end{aligned}$	Output Enable Time	$\begin{aligned} & 3.5 \\ & 3.8 \end{aligned}$		$\begin{aligned} & 10.4 \\ & 10.9 \end{aligned}$	（Note 13）		ns
$\begin{aligned} & \hline t_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLZ}} \end{aligned}$	Output Disable Time	$\begin{aligned} & 3.4 \\ & 3.1 \end{aligned}$		$\begin{aligned} & 8.5 \\ & 8.1 \end{aligned}$	（Note 14）		ns
toshl （Note 12）	Pin to Pin Skew HL Data to Output			1.3			ns
tosth （Note 12）	Pin to Pin Skew LH Data to Output			2.1			ns
tost （Note 12）	Pin to Pin Skew LH／HL Data to Output			4.0			ns

Note 10：This specification is guaranteed but not tested．The limits apply to propagation delays for all paths described switching in phase
（i．e．，all LOW－to－HIGH，HIGH－to－LOW，etc．）．
Note 11：This specification is guaranteed but not tested．The limits represent propagation delays with 250 pF load capacitors in place of the 50 pF load capacitors in the standard AC load．This specification pertains to single output switching only．
Note 12：Skew is defined as the absolute value of the difference between the actual propagation delays for any two separate outputs of the same device． The specification applies to any outputs switching HIGH－to－LOW（toshl），LOW－to－HIGH（tosth），or any combination switching LOW－to－HIGH and／or HIGH－ to－LOW（tost）．
Note 13：3－STATE delays are load dominated and have been excluded from the datasheet．
Note 14：The Output Disable Time is dominated by the RC network（ $500 \Omega, 250 \mathrm{pF}$ ）on the output and has been excluded from the datasheet．

Capacitance

Symbol	Parameter	Typ	Units	
C_{IN}	Input Capacitance	4.5	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$
C_{PD}	Power Dissipation Capacitance	30	pF	$\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V}$

FACT Noise Characteristics

The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT.
Equipment:
Hewlett Packard Model 8180A Word Generator
PC-163A Test Fixture
Tektronics Model 7854 Oscilloscope
Procedure:

1. Verify Test Fixture Loading: Standard Load 50 pF , 500Ω.
2. Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously.
3. Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage
4. Set the HFS generator to toggle all but one output at a frequency of 1 MHz . Greater frequencies will increase DUT heating and effect the results of the measurement
5. Set the HFS generator input levels at OV LOW and 3V HIGH for ACT devices and OV LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope.

$\mathrm{V}_{\mathrm{OHV}}$ and $\mathrm{V}_{\mathrm{OLP}}$ are measured with respect to ground reference
Input pulses have the following characteristics: $f=1 \mathrm{MHz}, t_{r}=3 \mathrm{~ns}$, $\mathrm{t}_{\mathrm{f}}=3 \mathrm{~ns}$, skew <150 ps.

FIGURE 1. Quiet Output Noise Voltage Waveforms
$\mathrm{V}_{\mathrm{OLP}} / \mathrm{V}_{\mathrm{OLV}}$ and $\mathrm{V}_{\mathrm{OHP}} / \mathrm{V}_{\mathrm{OHV}}$:

- Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output volt ages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- Measure $\mathrm{V}_{\text {OLP }}$ and $\mathrm{V}_{\text {OLV }}$ on the quiet output during the worst case transition for active and enable. Measure $\mathrm{V}_{\mathrm{OHP}}$ and $\mathrm{V}_{\mathrm{OHV}}$ on the quiet output during the worst case active and enable transition.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements.
$\mathrm{V}_{\text {ILD }}$ and $\mathrm{V}_{\text {IHD }}$:
- Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe.
- First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or step out a min of 2 ns . Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed $\mathrm{V}_{I H}$ limits. The input LOW voltage level at which oscillation occurs is defined as $V_{\text {ILD }}$.
- Next decrease the input HIGH voltage level on the, V_{IH}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds $\mathrm{V}_{\text {IL }}$ limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as $\mathrm{V}_{\mathrm{IHD}}$.
- Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeat ability of the measurements.

FIGURE 2. Simultaneous Switching Test Circuit

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

48-Lead Thin Shrink Small Outline Package (TSSOP), JEDEC MO-153, 6.1mm Wide Package Number MTD48

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

[^0]: FACT $^{\top M}$, FACT Quiet Series ${ }^{T M}$ and GTO ${ }^{T M}$ are trademarks of Fairchild Semiconductor Corporation.

