Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs. With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas. We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry! # Contact us Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China July 1989 Revised November 1999 # 74ACQ373 • 74ACTQ373 Quiet Series™ Octal Transparent Latch with 3-STATE Outputs #### **General Description** The ACQ/ACTQ373 consists of eight latches with 3-STATE outputs for bus organized system applications. The latches appear transparent to the data when Latch Enable (LE) is HIGH. When LE is LOW, the data satisfying the input timing requirements is latched. Data appears on the bus when the Output Enable (OE) is LOW. When OE is HIGH, the bus output is in the HIGH impedance state. The ACQ/ACTQ373 utilizes Fairchild Quiet Series™ technology to guarantee quiet output switching and improve dynamic threshold performance. features GTO™ output control and undershoot corrector in addition to a split ground bus for superior performance. #### **Features** - \blacksquare $\rm I_{CC}$ and $\rm I_{OZ}$ reduced by 50% - Guaranteed simultaneous switching noise level and dynamic threshold performance - Guaranteed pin-to-pin skew AC performance - Improved latch up immunity - Eight latches in a single package - 3-STATE outputs drive bus lines or buffer memory address registers - Outputs source/sink 24 mA - Faster prop delays than the standard AC/ACT373 #### **Ordering Code:** | Order Number | Package Number | Package Description | |--------------|----------------|---| | 74ACQ373SC | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body | | 74ACQ373SJ | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | 74ACQ373PC | N20A | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001m 0.300" Wide | | 74ACTQ373SC | M20B | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body | | 74ACTQ373SJ | M20D | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide | | 74ACQT373QSC | MQA20 | 20-Lead Quarter Size Outline Package (QSOP), JEDEC MO-137, 0.150" Wide | | 74ACTQ373PC | N20A | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001m 0.300" Wide | Device also available in Tape and Reel. Specify by appending suffix letter "X" to the ordering code. #### Connection Diagram #### **Pin Descriptions** | Pin Names | Description | | | | | |--------------------------------|-----------------------|--|--|--|--| | D ₀ –D ₇ | Data Inputs | | | | | | LE | Latch Enable Input | | | | | | ŌĒ | Output Enable Input | | | | | | O ₀ –O ₇ | 3-STATE Latch Outputs | | | | | $FACT^{\tiny{TM}}, Quiet \ Series^{\tiny{TM}}, \ FACT \ Quiet \ Series^{\tiny{TM}}, \ and \ GTO^{\tiny{TM}} \ are \ trademarks \ of \ Fairchild \ Semiconductor \ Corporation.$ ## **Logic Symbols** IEEE/IEC #### **Functional Description** The ACQ/ACTQ373 contains eight D-type latches with 3-STATE standard outputs. When the Latch Enable (LE) input is HIGH, data on the D_{n} inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW, the latches store the information that was present on the D inputs at setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE standard outputs are controlled by the Output Enable (OE) input. When OE is LOW, the standard outputs are in the 2-state mode. When \overline{OE} is HIGH, the standard outputs are in the high impedance mode but this does not interfere with entering new data into the latches. #### **Truth Table** | | Inputs | | | | | |----|--------|----------------|----------------|--|--| | LE | OE | D _n | O _n | | | | Х | Н | Х | Z | | | | Н | L | L | L | | | | Н | L | Н | Н | | | | L | L | Х | O ₀ | | | H = HIGH Voltage Level L = LOW Voltage Level Z = High Impedance $$\begin{split} X &= Immaterial \\ O_0 &= Previous \ O_0 \ before \ HIGH-to-LOW \ transition \ of \ Latch \ Enable \end{split}$$ ## **Logic Diagram** Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays. #### **Absolute Maximum Ratings**(Note 1) Supply Voltage (V_{CC}) -0.5V to +7.0V DC Input Diode Current (I_{IK}) $\begin{array}{c} \text{V}_{\text{I}} = -0.5 \text{V} & -20 \text{ mA} \\ \text{V}_{\text{I}} = \text{V}_{\text{CC}} + 0.5 \text{V} & +20 \text{ mA} \\ \text{DC Input Voltage (V}_{\text{I}}) & -0.5 \text{V to V}_{\text{CC}} + 0.5 \text{V} \end{array}$ DC Output Diode Current (I_{OK}) $V_{O} = -0.5V$ -20 mA $V_{O} = V_{CC} + 0.5V$ +20 mA DC Output Voltage (V_{O}) -0.5V to $V_{CC} + 0.5V$ DC Output Source or Sink Current (I_O) ± 50 mA DC V_{CC} or Ground Current per Output Pin (I_{CC} or I_{GND}) ± 50 mA Storage Temperature (T_{STG}) -65°C to $+150^{\circ}\text{C}$ DC Latchup Source or Sink Current ±300 mA Junction Temperature (T_J) PDIP 140°C # Recommended Operating Conditions Supply Voltage (V_{CC}) $\begin{array}{ccc} ACQ & 2.0V \text{ to } 6.0V \\ ACTQ & 4.5V \text{ to } 5.5V \\ Input Voltage (V_I) & 0V \text{ to } V_{CC} \\ Output Voltage (V_O) & 0V \text{ to } V_{CC} \\ Operating Temperature (T_A) & -40^{\circ}C \text{ to } +85^{\circ}C \\ \end{array}$ Minimum Input Edge Rate $\Delta V/\Delta t$ ACQ Devices $V_{\mbox{\footnotesize{IN}}}$ from 30% to 70% of $V_{\mbox{\footnotesize{CC}}}$ V_{CC} @ 3.0V, 4.5V, 5.5V 125 mV/ns Minimum Input Edge Rate $\Delta V/\Delta t$ **ACTQ Devices** V_{CC} @ 4.5V, 5.5V 125 mV/ns Note 1: Absolute maximum ratings are those values beyond which damage to the device may occur. The databook specifications should be met, without exception, to ensure that the system design is reliable over its power supply, temperature, and output/input loading variables. Fairchild does not recommend operation of FACT™ circuits outside databook specifications. #### **DC Electrical Characteristics for ACQ** | Symbol | Parameter V _{CC} T _A = +25°C | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ | Units | Conditions | | | |--------------------------|--|-----|---|-------|-------------------|-----|--| | Syllibol | Farameter | (V) | Тур | Gu | Guaranteed Limits | | Conditions | | V _{IH} | Minimum HIGH Level | 3.0 | 1.5 | 2.1 | 2.1 | | V _{OUT} = 0.1V | | | Input Voltage | 4.5 | 2.25 | 3.15 | 3.15 | V | or V _{CC} – 0.1V | | | | 5.5 | 2.75 | 3.85 | 3.85 | | | | V _{IL} | Maximum LOW Level | 3.0 | 1.5 | 0.9 | 0.9 | | V _{OUT} = 0.1V | | | Input Voltage | 4.5 | 2.25 | 1.35 | 1.35 | V | or V _{CC} – 0.1V | | | | 5.5 | 2.75 | 1.65 | 1.65 | | | | V _{OH} | Minimum HIGH Level | 3.0 | 2.99 | 2.9 | 2.9 | | | | | Output Voltage | 4.5 | 4.49 | 4.4 | 4.4 | V | $I_{OUT} = -50 \mu A$ | | | | 5.5 | 5.49 | 5.4 | 5.4 | | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | 3.0 | | 2.56 | 2.46 | | $I_{OH} = -12 \text{ mA}$ | | | | 4.5 | | 3.86 | 3.76 | V | $I_{OH} = -24 \text{ mA}$ | | | | 5.5 | | 4.86 | 4.76 | | I _{OH} = -24 mA (Note 2) | | V _{OL} | Maximum LOW Level | 3.0 | 0.002 | 0.1 | 0.1 | | | | | Output Voltage | 4.5 | 0.001 | 0.1 | 0.1 | V | $I_{OUT} = 50 \mu A$ | | | | 5.5 | 0.001 | 0.1 | 0.1 | | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | 3.0 | | 0.36 | 0.44 | | $I_{OL} = 12 \text{ mA}$ | | | | 4.5 | | 0.36 | 0.44 | V | $I_{OL} = 24 \text{ mA}$ | | | | 5.5 | | 0.36 | 0.44 | | I _{OL} = 24 mA (Note 2) | | I _{IN} (Note 4) | Maximum Input Leakage Current | 5.5 | | ± 0.1 | ± 1.0 | μΑ | $V_I = V_{CC}$, GND | | I _{OLD} | Minimum Dynamic | 5.5 | | | 75 | mA | V _{OLD} = 1.65V Max | | I _{OHD} | Output Current (Note 3) | 5.5 | | | -75 | mA | V _{OHD} = 3.85V Min | | I _{CC} (Note 4) | Maximum Quiescent Supply Current | 5.5 | | 4.0 | 40.0 | μΑ | V _{IN} = V _{CC} or GND | | l _{OZ} | Maximum 3-STATE | | | | | | V_{I} (OE) = V_{IL} , V_{IH} | | | Leakage Current | 5.5 | | ±0.25 | ±2.5 | μΑ | $V_I = V_{CC}$, GND | | | | | | | | | $V_O = V_{CC}$, GND | | V _{OLP} | Quiet Output | 5.0 | 1.1 | 1.5 | | V | Figure 1, Figure 2 | | | Maximum Dynamic V _{OL} | 3.0 | 1.1 | 1.5 | | \ \ | (Note 5)(Note 6) | | V _{OLV} | Quiet Output | 5.0 | -0.6 | -1.2 | | V | Figure 2, Figure 2 | | | Maximum Dynamic V _{OL} | 3.0 | -0.0 | -1.2 | | | (Note 5)(Note 6) | | | Maximum Dynamic V _{OL} | | | | | | (Note 5)(Note 6) | #### DC Electrical Characteristics for ACQ (Continued) | Symbol | Parameter | v _{cc} | $T_A = +25^{\circ}C$ | | $^{\circ}$ C $T_{A} = -40^{\circ}$ C to $+85^{\circ}$ C | | Conditions | |-------------------|--|-----------------|----------------------|-------------------|---|-------|------------------| | 0, | . a.aoto | (V) Typ | | Guaranteed Limits | | Units | 00114110110 | | V _{IHD} | Minimum HIGH Level Dynamic Input Voltage | 5.0 | 3.1 | 3.5 | | ٧ | (Note 5)(Note 7) | | V _{II D} | Maximum LOW Level Dynamic Input Voltage | 5.0 | 1.9 | 1.5 | | V | (Note 5)(Note 7) | Note 2: All outputs loaded; thresholds on input associated with output under test. Note 3: Maximum test duration 2.0 ms, one output loaded at a time. Note 4: I_{IN} and I_{CC} @ 3.0V are guaranteed to be less than or equal to the respective limit @ 5.5V V_{CC} . Note 5: DIP package Note 6: Max number of outputs defined as (n). Data inputs are driven 0V to 5V. One output @ GND. Note 7: Max number of data inputs (n) switching. (n–1) inputs switching 0V to 5V (ACQ). Input-under-test switching: 5V to threshold (V_{ILD}) , 0V to threshold (V_{ILD}) , f = 1 MHz. #### **DC Electrical Characteristics for ACTQ** | Symbol | Parameter | Parameter V_{CC} $T_A = +25^{\circ}C$ $T_A = -40^{\circ}C$ to $+85^{\circ}C$ | | Units | Conditions | | | | |--------------------------|----------------------------------|--|-------|-------|-----------------|-------|------------------------------------|--| | Symbol | Parameter | (V) | Тур | Gu | aranteed Limits | Units | Conditions | | | V _{IH} | Minimum HIGH Level | 4.5 | 1.5 | 2.0 | 2.0 | V | $V_{OUT} = 0.1V$ | | | | Input Voltage | 5.5 | 1.5 | 2.0 | 2.0 | v | or V _{CC} - 0.1V | | | V _{IL} | Maximum LOW Level | 4.5 | 1.5 | 0.8 | 0.8 | V | V _{OUT} = 0.1V | | | | Input Voltage | 5.5 | 1.5 | 0.8 | 0.8 | V | or V _{CC} - 0.1V | | | V _{OH} | Minimum HIGH Level | 4.5 | 4.49 | 4.4 | 4.4 | V | I _{OUT} = -50 μA | | | | Output Voltage | 5.5 | 5.49 | 5.4 | 5.4 | v | 100Τ = -30 μΑ | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 3.86 | 3.76 | V | $I_{OH} = -24 \text{ mA}$ | | | | | 5.5 | | 4.86 | 4.76 | | $I_{OH} = -24 \text{ mA (Note 8)}$ | | | V _{OL} | Maximum LOW Level | 4.5 | 0.001 | 0.1 | 0.1 | ٧ | I 50 A | | | | Output Voltage | 5.5 | 0.001 | 0.1 | 0.1 | V | $I_{OUT} = 50 \mu A$ | | | | | | | | | | $V_{IN} = V_{IL}$ or V_{IH} | | | | | 4.5 | | 0.36 | 0.44 | V | $I_{OL} = 24 \text{ mA}$ | | | | | 5.5 | | 0.36 | 0.44 | | I _{OL} = 24 mA (Note 8) | | | I _{IN} (Note 4) | Maximum Input Leakage Current | 5.5 | | ± 0.1 | ± 1.0 | μΑ | $V_I = V_{CC}$, GND | | | I _{OZ} | Maximum 3-STATE | 5.5 | | ±0.25 | ±2.5 | μА | $V_I = V_{IL}, V_{IH}$ | | | | Leakage Current | 5.5 | | ±0.25 | ±2.5 | μА | $V_O = V_{CC}$, GND | | | I _{CCT} | Maximum I _{CC} /Input | 5.5 | 0.6 | | 1.5 | mA | $V_I = V_{CC} - 2.1V$ | | | I _{OLD} | Minimum Dynamic | 5.5 | | | 75 | mA | V _{OLD} = 1.65V Max | | | I _{OHD} | Output Current (Note 9) | 5.5 | | | -75 | mA | V _{OHD} = 3.85V Min | | | I _{CC} (Note 4) | Maximum Quiescent Supply Current | 5.5 | | 4.0 | 40.0 | μΑ | $V_{IN} = V_{CC}$, or GND | | | V _{OLP} | Quiet Output | 5.0 | 1.1 | 1.5 | | ٧ | Figure 1, Figure 2 | | | | Maximum Dynamic V _{OL} | 5.0 | 1.1 | 1.5 | | v | (Note 10)(Note 11) | | | V _{OLV} | Quiet Output | F 0 | 0.0 | 1.0 | | ٧ | Figure 1, Figure 2 | | | | Minimum Dynamic V _{OL} | 5.0 | -0.6 | -1.2 | | V | (Note 10)(Note 11) | | | V _{IHD} | Minimum HIGH Level | 5.0 | 1.9 | 2.2 | | ٧ | (Note 10)(Note 12) | | | | Dynamic Input Voltage | 5.0 | 1.9 | 2.2 | | v | (Note 10)(Note 12) | | | V _{ILD} | Maximum LOW Level | 5.0 | 1.2 | 0.8 | | ٧ | (Note 10)(Note 12) | | | | Dynamic Input Voltage | 5.0 | 1.2 | 0.0 | | v | (INOTE TO)(INOTE IZ) | | Note 8: All outputs loaded; thresholds on input associated with output under test. Note 9: Maximum test duration 2.0 ms, one output loaded at a time. Note 10: Plastic DIP package. Note 11: Max number of outputs defined as (n). Data inputs are driven 0V to 3V. One output @ GND. Note 12: Max number of data inputs (n) switching. (n-1) inputs switching 0V to 3V (ACTQ). Input-under-test switching: 3V to threshold (V_{ILD}) , 0V to threshold (V_{IHD}) , f = 1 MHz. #### **AC Electrical Characteristics for ACQ** | | | v _{cc} | | $T_A = +25^{\circ}C$ | | T _A = -40° | C to +85°C | | |------------------|--|-----------------|-----|--|------|-----------------------|------------|-------| | Symbol | Parameter | (V) | | $\textbf{C}_{\textbf{L}} = \textbf{50 pF}$ | | $C_L =$ | 50 pF | Units | | | | (Note 13) | Min | Тур | Max | Min | Max | | | t _{PHL} | Propagation Delay | 3.3 | 2.5 | 8.0 | 10.5 | 2.5 | 11.0 | ne | | t _{PLH} | D _n to O _n | 5.0 | 1.5 | 5.5 | 7.0 | 1.5 | 7.5 | ns | | t _{PHL} | Propagation Delay | 3.3 | 2.5 | 8.0 | 12.0 | 2.5 | 12.5 | ns | | t _{PLH} | LE to O _n | 5.0 | 2.0 | 6.0 | 8.0 | 2.0 | 8.5 | 115 | | t _{PZL} | Output Enable Time | 3.3 | 2.5 | 8.5 | 13.0 | 2.5 | 13.5 | ns | | t _{PZH} | | 5.0 | 1.5 | 6.5 | 8.5 | 1.5 | 9.0 | 115 | | t _{PHZ} | Output Disable Time | 3.3 | 1.0 | 9.0 | 14.5 | 1.0 | 15.0 | ns | | t _{PLZ} | | 5.0 | 1.0 | 6.5 | 9.5 | 1.0 | 10.0 | 115 | | toshl | Output to Output Skew | 3.3 | | 1.0 | 1.5 | | 1.5 | ns | | toslh | D _n to O _n (Note 14) | 5.0 | | 0.5 | 1.0 | | 1.0 | 115 | Note 13: Voltage Range 5.0 is $5.0V \pm 0.5V$. Voltage Range 3.3 is 3.3V \pm 0.3V. Note 14: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design. ### **AC Operating Requirements for ACQ** | Symbol | Parameter | V _{CC} (V) | $T_A = +25$ °C $C_L = 50 \text{ pF}$ | | $T_A = -40$ °C to +85°C
$C_L = 50$ pF | Units | |----------------|-------------------------|---------------------|--------------------------------------|------|--|-------| | | | (Note 15) | Тур | Guai | ranteed Minimum | | | t _S | Setup Time, HIGH or LOW | 3.3 | 0 | 3.0 | 3.0 | | | | D _n to LE | 5.0 | 0 | 3.0 | 3.0 | ns | | t _H | Hold Time, HIGH or LOW | 3.3 | 0 | 1.5 | 1.5 | | | | D _n to LE | 5.0 | 0 | 1.5 | 1.5 | ns | | t _W | LE Pulse Width, HIGH | 3.3 | 2.0 | 4.0 | 4.0 | | | | | 5.0 | 2.0 | 4.0 | 4.0 | ns | Note 15: Voltage Range 5.0 is 5.0V \pm 0.5V. Voltage Range 3.3 is 3.3V \pm 0.3V. #### **AC Electrical Characteristics for ACTQ** | Symbol | Parameter | V _{CC} (V) | | $T_A = +25$ °C $C_L = 50 \text{ pF}$ | | | $T_A = -40^{\circ}\text{C to } +85^{\circ}\text{C}$ $C_L = 50 \text{ pF}$ | | | |--|--|---------------------|-----|--------------------------------------|------|-----|---|----|--| | | | (Note 16) | Min | Тур | Max | Min | Max | | | | t _{PHL}
t _{PLH} | Propagation Delay D _n to O _n | 5.0 | 2.0 | 6.5 | 7.5 | 2.0 | 8.0 | ns | | | t _{PHL}
t _{PLH} | Propagation Delay
LE to O _n | 5.0 | 2.5 | 7.0 | 8.5 | 2.5 | 9.0 | ns | | | t _{PZL}
t _{PZH} | Output Enable
Time | 5.0 | 2.0 | 7.0 | 9.0 | 2.0 | 9.5 | ns | | | t _{PHZ}
t _{PLZ} | Output Disable
Time | 5.0 | 1.0 | 8.0 | 10.0 | 1.0 | 10.5 | ns | | | t _{OSHL}
t _{OSLH} | Output to Output Skew D _n to O _n (Note 17) | 5.0 | | 0.5 | 1.0 | | 1.0 | ns | | Note 16: Voltage Range 5.0 is $5.0V \pm 0.5V$. Note 17: Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t_{OSHL}) or LOW-to-HIGH (t_{OSLH}). Parameter guaranteed by design. # AC Operating Requirements for ACTQ | Symbol | Parameter | V _{cc}
(V) | T _A = +25°C
C _L = 50 pF | | $T_A = -40$ °C to +85°C
$C_L = 50 \text{ pF}$ | Units | | |----------------|--|------------------------|--|---------------------|--|-------|--| | | | (Note 18) | Тур | Typ Guaranteed Mini | | | | | t _S | Setup Time, HIGH or LOW D _n to LE | 5.0 | 0 | 3.0 | 3.0 | ns | | | t _H | Hold Time, HIGH or LOW D _n to LE | 5.0 | 0 | 1.5 | 1.5 | ns | | | t _W | LE Pulse Width, HIGH | 5.0 | 2.0 | 4.0 | 4.0 | ns | | Note 18: Voltage Range 5.0 is 5.0V ± 0.5V # Capacitance | Symbol | Parameter | Тур | Units | Conditions | |-----------------|-------------------------------|------|-------|------------------------| | C _{IN} | Input Capacitance | 4.5 | pF | V _{CC} = OPEN | | C _{PD} | Power Dissipation Capacitance | 44.0 | pF | $V_{CC} = 5.0V$ | #### **FACT Noise Characteristics** The setup of a noise characteristics measurement is critical to the accuracy and repeatability of the tests. The following is a brief description of the setup used to measure the noise characteristics of FACT. #### Equipment: Hewlett Packard Model 8180A Word Generator PC-163A Test Fixture Tektronics Model 7854 Oscilloscope #### Procedure: - 1. Verify Test Fixture Loading: Standard Load 50 pF, $500\Omega.\,$ - Deskew the HFS generator so that no two channels have greater than 150 ps skew between them. This requires that the oscilloscope be deskewed first. It is important to deskew the HFS generator channels before testing. This will ensure that the outputs switch simultaneously. - Terminate all inputs and outputs to ensure proper loading of the outputs and that the input levels are at the correct voltage. - Set the HFS generator to toggle all but one output at a frequency of 1 MHz. Greater frequencies will increase DUT heating and effect the results of the measurement. - Set the HFS generator input levels at 0V LOW and 3V HIGH for ACT devices and 0V LOW and 5V HIGH for AC devices. Verify levels with an oscilloscope. Note A: V_{OHV} and V_{OLP} are measured with respect to ground reference. Note B: Input pulses have the following characteristics: $\label{eq:f_state} f = 1 \text{ MHz}, \ t_r = 3 \text{ ns, } t_f = 3 \text{ ns, skew} < 150 \text{ ps.}$ FIGURE 1. Quiet Output Noise Voltage Waveforms #### V_{OLP}/V_{OLV} and V_{OHP}/V _{OHV}: - Determine the quiet output pin that demonstrates the greatest noise levels. The worst case pin will usually be the furthest from the ground pin. Monitor the output voltages using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe. - Measure V_{OLP} and V_{OLV} on the quiet output during the worst case transition for active and enable. Measure V_{OHP} and V_{OHV} on the quiet output during the worst case active and enable transition. - Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements. #### V_{ILD} and V_{IHD}: - Monitor one of the switching outputs using a 50Ω coaxial cable plugged into a standard SMB type connector on the test fixture. Do not use an active FET probe. - First increase the input LOW voltage level, V_{IL}, until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input LOW voltage level at which oscillation occurs is defined as V_{ILD}. - Next decrease the input HIGH voltage level, V_{IH} until the output begins to oscillate or steps out a min of 2 ns. Oscillation is defined as noise on the output LOW level that exceeds V_{IL} limits, or on output HIGH levels that exceed V_{IH} limits. The input HIGH voltage level at which oscillation occurs is defined as V_{IHD}. - Verify that the GND reference recorded on the oscilloscope has not drifted to ensure the accuracy and repeatability of the measurements. FIGURE 2. Simultaneous Switching Test Circuit 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Body Package Number M20B ## $\begin{picture}(200,0)\put(0,0){\line(1,0){100}}\put(0,0$ 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications. #### LIFE SUPPORT POLICY FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein: - Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user. - A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness. www.fairchildsemi.com