

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74ALVC162334A

16-bit registered driver with inverted register enable and 30 Ω termination resistors (3-state)

Rev. 03 — 13 December 2006

Product data sheet

1. General description

The 74ALVC162334A is a 16-bit universal bus driver. Data flow is controlled by active LOW output enable (\overline{OE}) , active LOW latch enable (\overline{LE}) , and clock input (CP).

When \overline{LE} is LOW, the A to Y data flow is transparent. When \overline{LE} is HIGH and CP is held at LOW or HIGH, the data is latched; on the LOW to HIGH transient of CP, the A data is stored in the latch/flip-flop.

The 74ALVC162334A is designed with 30 Ω series resistors in both HIGH or LOW output stages.

When \overline{OE} is LOW, the outputs are active. When \overline{OE} is HIGH, the outputs go to the high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latch/flip-flop.

To ensure the high-impedance state during power-up or power-down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

2. Features

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive: ±24 mA at 3.0 V
- MULTIBYTE flow-through standard pinout architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Output drive capability 50 Ω transmission lines at 85 °C
- Integrated 30 Ω termination resistors
- Input diodes to accommodate strong drivers

3. Quick reference data

Table 1. Quick reference data

 $V_{CC} = 3.3 \text{ V} \pm 0.3 \text{ V}$; GND = 0 V; $t_f = t_f \le 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$ (see Figure 11).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8 4.4	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
f _{max}	maximum input clock frequency	Figure 8	150	240	-	MHz
Ci	input capacitance		-	4.0	-	pF
C _{io}	input/output capacitance		-	8.0	-	pF
C_{PD}	power dissipation capacitance	per buffer; $V_I = GND$ to V_{CC}	[2]			
		transparent mode; output enabled	-	10	-	pF
		transparent mode; output disabled	-	3	-	pF
		clocked mode; output enabled	-	21	-	pF
		clocked mode; output disabled	-	15	-	рF

^[1] All typical values are at T_{amb} = 25 °C.

[2] C_{PD} is used to determine the dynamic power dissipation (P_D) in μ W.

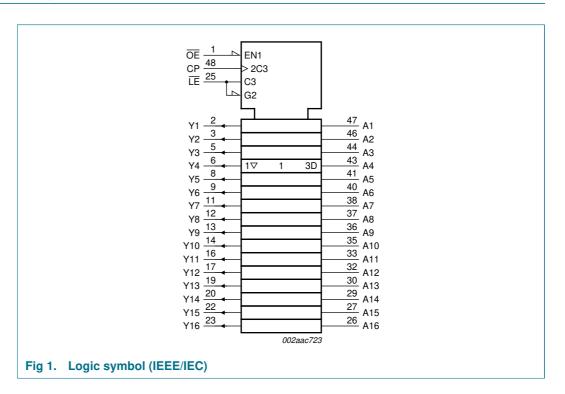
 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \; (C_L \times V_{CC}{}^2 \times f_o), \; \text{where:} \;$

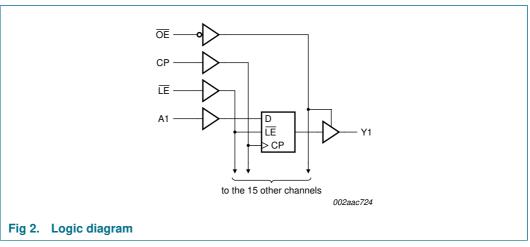
 f_i = input frequency in MHz;

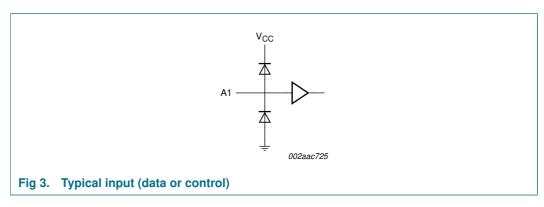
C_L = output load capacitance in pF;

 $f_o = output frequency in MHz;$

 V_{CC} = supply voltage in V;

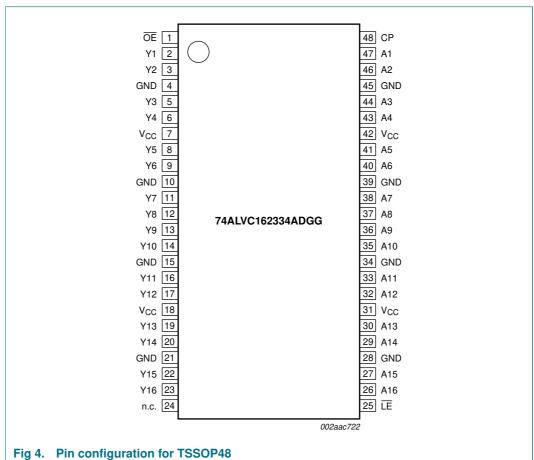

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$


4. Ordering information


Table 2. Ordering information

Type number	Temperature	Package					
	range	Name	Description	Version			
74ALVC162334ADGG	–40 °C to +85 °C	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1			

5. Functional diagram



6. Pinning information

6.1 Pinning

The state of the s

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
ŌĒ	1	output enable input (active LOW)
Y1	2	data output 1
Y2	3	data output 2
GND	4, 10, 15, 21, 28, 34, 39, 45	ground supply (0 V)
Y3	5	data output 3
Y4	6	data output 4
V_{CC}	7, 18, 31, 42	positive supply voltage
Y5	8	data output 5
Y6	9	data output 6
Y7	11	data output 7
Y8	12	data output 8

Table 3. Pin description ...continued

Y9 13 data output 10 Y10 14 data output 10 Y11 16 data output 12 Y12 17 data output 13 Y14 20 data output 14 Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 12 A11 33 data input 10 A9 36 data input 8 A7 38 data input 7 A6 40 data input 5 A4 43 data input 5 A4 43 data input 4 A3 44 data input 3 A2	Symbol	Pin	Description
Y11 16 data output 11 Y12 17 data output 12 Y13 19 data output 13 Y14 20 data output 14 Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	Y9	13	data output 9
Y12 17 data output 12 Y13 19 data output 13 Y14 20 data output 14 Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	Y10	14	data output 10
Y13 19 data output 13 Y14 20 data output 14 Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 3 A2 46 data input 2 A1 47 data input 1	Y11	16	data output 11
Y14 20 data output 14 Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 3 A2 46 data input 2 A1 47 data input 1	Y12	17	data output 12
Y15 22 data output 15 Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 3 A2 46 data input 2 A1 47 data input 1	Y13	19	data output 13
Y16 23 data output 16 n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	Y14	20	data output 14
n.c. 24 not connected LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 2 A1 47 data input 1	Y15	22	data output 15
LE 25 latch enable input (active LOW) A16 26 data input 16 A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 1 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 2 A1 47 data input 1	Y16	23	data output 16
A16	n.c.	24	not connected
A15 27 data input 15 A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 1	ΙΕ	25	latch enable input (active LOW)
A14 29 data input 14 A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A16	26	data input 16
A13 30 data input 13 A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 1	A15	27	data input 15
A12 32 data input 12 A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 data input 2 A1 data input 1	A14	29	data input 14
A11 33 data input 11 A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A13	30	data input 13
A10 35 data input 10 A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A12	32	data input 12
A9 36 data input 9 A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A11	33	data input 11
A8 37 data input 8 A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A10	35	data input 10
A7 38 data input 7 A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A9	36	data input 9
A6 40 data input 6 A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A8	37	data input 8
A5 41 data input 5 A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A7	38	data input 7
A4 43 data input 4 A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A6	40	data input 6
A3 44 data input 3 A2 46 data input 2 A1 47 data input 1	A5	41	data input 5
A2 46 data input 2 A1 47 data input 1	A4	43	data input 4
A1 47 data input 1	A3	44	data input 3
<u> </u>	A2	46	data input 2
CP 48 clock input	A1	47	data input 1
	CP	48	clock input

7. Functional description

Refer to Figure 1 "Logic symbol (IEEE/IEC)" and Figure 2 "Logic diagram".

7.1 Function selection

Table 4. Function selection

 $H = HIGH \ voltage \ level; \ L = LOW \ voltage \ level; \ X = Don't \ care; \ Z = high-impedance \ OFF-state;$ $\uparrow = LOW \ to \ HIGH \ level \ transition.$

Inputs						
ŌĒ	LE	СР	An	Yn		
Н	X	X	Χ	Z		
L	L	X	L	L		
L	L	X	Н	Н		
L	Н	1	L	L		
L	Н	1	Н	Н		
L	Н	Н	X	Y ₀ [1]		
L	Н	L	X	Y ₀ [2]		

^[1] Output level before the indicated steady-state input conditions were established, provided that CP is HIGH before $\overline{\text{LE}}$ goes LOW.

^[2] Output level before the indicated steady-state input conditions were established.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

9	10	,			
Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-	-50	mA
V _I	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	$V_O > V_{CC}$ or $V_O < 0$ V	-	±50	mA
V _O	output voltage		<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
I _{O(sink/source)}	output sink or source current	$V_O = 0 V \text{ to } V_{CC}$	-	±50	mA
I _{CC}	supply current		-	±100	mA
I_{GND}	ground current		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot} /pack	total power dissipation per package	for temperature range $-40~^{\circ}\text{C}$ to $+125~^{\circ}\text{C}$; above $+55~^{\circ}\text{C}$ derate linearly with 8 mW/K	-	600	mW

^[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Operating conditions

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{CC}	supply voltage	2.5 V range for maximum speed performance at 30 pF output load	2.3	-	2.7	V
		3.3 V range for maximum speed performance at 50 pF output load	3.0	-	3.6	V
		for low-voltage applications	1.2	-	3.6	V
VI	input voltage		0	-	V_{CC}	V
Vo	output voltage		0	-	V_{CC}	V
T _{amb}	ambient temperature	operating in free-air	-40	-	+85	°C
t _r	rise time	V _{CC} = 2.3 V to 3.0 V	0	-	20	ns/V
		V _{CC} = 3.0 V to 3.6 V	0	-	10	ns/V
t _f	fall time	V _{CC} = 2.3 V to 3.0 V	0	-	20	ns/V
		V _{CC} = 3.0 V to 3.6 V	0	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

 $T_{amb} = -40 \,^{\circ}\text{C}$ to +85 $^{\circ}\text{C}$; over recommended operating conditions; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
V_{IH}	HIGH-level input voltage	V_{CC} = 2.3 V to 2.7 V	1.7	1.2	-	V
		V _{CC} = 2.7 V to 3.6 V	2.0	1.5	-	V
V_{IL}	LOW-level input voltage	$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	1.2	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	1.5	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.3 V to 3.6 V; I_{O} = -100 μA	$V_{CC}-0.2$	V _{CC}	-	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = -4 \text{ mA}$	$V_{CC}-0.4$	$V_{CC} - 0.11$	-	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = -6 \text{ mA}$	$V_{CC}-0.6$	$V_{CC} - 0.17$	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -4 \text{ mA}$	$V_{CC}-0.5$	$V_{CC} - 0.09$	-	٧
		$V_{CC} = 2.7 \text{ V}; I_{O} = -8 \text{ mA}$	$V_{CC} - 0.7$	$V_{CC} - 0.19$	-	٧
		$V_{CC} = 3.0 \text{ V}; I_{O} = -6 \text{ mA}$	$V_{CC}-0.6$	$V_{CC} - 0.13$	-	٧
		$V_{CC} = 3.0 \text{ V}; I_{O} = -12 \text{ mA}$	V _{CC} - 1.0	$V_{CC} - 0.27$	-	٧
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		V_{CC} = 2.3 V to 3.6 V; I_{O} = 100 μA	-	GND	0.20	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = 4 \text{ mA}$	-	0.07	0.40	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = 6 \text{ mA}$	-	0.11	0.55	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = 4 \text{ mA}$	-	0.06	0.40	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = 8 \text{ mA}$	-	0.13	0.60	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = 6 \text{ mA}$	-	0.09	0.55	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = 12 \text{ mA}$	-	0.19	0.80	V
ILI	input leakage current	V_{CC} = 2.3 V to 3.6 V; V_I = V_{CC} or GND	-	0.1	5	μΑ
l _{OZ}	off-state output current	3-state; V_{CC} = 2.3 V to 3.6 V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND	-	0.1	10	μΑ
I _{CC}	supply current	V_{CC} = 2.3 V to 3.6 V; V_{I} = V_{CC} or GND; I_{O} = 0 mA	-	0.2	40	μΑ
ΔI_{CC}	additional supply current	$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V};$ $V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ mA}$	-	150	750	μΑ
Ci	input capacitance		-	4.0	-	pF
C _{io}	input/output capacitance		-	8.0	-	pF
C _{PD}	power dissipation	per buffer; V_I = GND to V_{CC}	<u>[2]</u>			
	capacitance	transparent mode; output enabled	-	10	-	pF
		transparent mode; output disabled	-	3	-	pF
		clocked mode; output enabled	-	21	-	pF
		clocked mode; output disabled	-	15	-	рF

^[1] All typical values are at $T_{amb} = 25$ °C.

^[2] C_{PD} is used to determine the dynamic power dissipation (P_D) in μW . $P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \ (C_L \times V_{CC}{}^2 \times f_o), \ where:$ $f_i = \text{input frequency in MHz};$

 C_L = output load capacitance in pF;

f_o = output frequency in MHz;

V_{CC} = supply voltage in V;

 $\Sigma (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs.}$

11. Dynamic characteristics

Table 8. Dynamic characteristics for V_{CC} = 2.3 V to 2.7 V range V_{CC} = 2.3 V to 2.7 V; GND = 0 V; t_r = t_f ≤ 2.0 ns; C_L = 30 pF (see Figure 11).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	3.5	5.0	ns
		LE to Yn; Figure 6	1.3	3.5	5.0	ns
		CP to Yn; Figure 8	1.4	3.7	5.4	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	3.5	5.0	ns
		LE to Yn; Figure 6	1.3	3.5	5.0	ns
		CP to Yn; Figure 8	1.4	3.7	5.4	ns
t _{PZH}	OFF-state to HIGH propagation delay	OE to Yn; Figure 10	2 1.4	3.5	5.0	ns
t _{PZL}	OFF-state to LOW propagation delay	OE to Yn; Figure 10	2 1.4	3.5	5.0	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OE to Yn; Figure 10	3 1.0	2.8	4.5	ns
t _{PLZ}	LOW to OFF-state propagation delay	OE to Yn; Figure 10	3 1.0	2.8	4.5	ns
t _w	pulse width	CP HIGH or LOW; Figure 8	3.3	1.0	-	ns
		LE HIGH; Figure 6	3.3	0.7	-	ns
t _{su}	set-up time	An to CP; Figure 9	1.0	-	-	ns
		An to LE; Figure 7	1.5	-	-	ns
t _h	hold time	An to CP; Figure 9	0.4	0.4	-	ns
		An to LE; Figure 7	1.4	0.4	-	ns
f _{max}	maximum input clock frequency	Figure 8	150	190	-	MHz

^[1] All typical values are at V_{CC} = 2.5 V and T_{amb} = 25 °C.

Table 9. Dynamic characteristics for $V_{CC} = 2.7 \text{ V}$

 $V_{CC} = 2.7 \text{ V; GND} = 0 \text{ V; } t_r = t_f \le 2.5 \text{ ns; } C_L = 50 \text{ pF (see } \frac{\text{Figure 11}}{\text{1}}).$

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
t_{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	3.3	4.6	ns
		LE to Yn; Figure 6	1.3	3.4	4.8	ns
		CP to Yn; Figure 8	1.4	3.8	6.2	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	3.3	4.6	ns
		LE to Yn; Figure 6	1.3	3.4	4.8	ns
		CP to Yn; Figure 8	1.4	3.8	6.2	ns
t _{PZH}	OFF-state to HIGH propagation delay	OE to Yn; Figure 10	<u>[2]</u> 1.1	3.7	6.0	ns
t _{PZL}	OFF-state to LOW propagation delay	OE to Yn; Figure 10	2 1.1	3.7	6.0	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OE to Yn; Figure 10	3 1.3	3.5	4.9	ns
t _{PLZ}	LOW to OFF-state propagation delay	OE to Yn; Figure 10	3 1.3	3.5	4.9	ns

^{[2] 3-}state output enable time.

^{[3] 3-}state output disable time.

Table 9. Dynamic characteristics for V_{CC} = **2.7 V** ... continued $V_{CC} = 2.7 \text{ V}$; GND = 0 V; $t_r = t_f \le 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$ (see Figure 11).

Symbol	Parameter	Conditions	Min	Typ[1]	Max	Unit
t_{w}	pulse width	CP HIGH or LOW; Figure 8	3.3	1.2	-	ns
		LE HIGH; Figure 6	3.3	0.6	-	ns
t _{su}	set-up time	An to CP; Figure 9	1.0	-	-	ns
		An to LE; Figure 7	1.5	-	-	ns
t _h	hold time	An to CP; Figure 9	0.6	0.3	-	ns
		An to LE; Figure 7	1.7	0.4	-	ns
f _{max}	maximum input clock frequency	Figure 8	150	190	-	MHz

^[1] All typical values are measured at T_{amb} = 25 °C.

Table 10. Dynamic characteristics for V_{CC} = 3.0 V to 3.6 V range V_{CC} = 3.3 V \pm 0.3 V; GND = 0 V; t_r = t_f \leq 2.5 ns; C_L = 50 pF (see Figure 11).

Parameter	Conditions	Min	Typ[1]	Max	Unit
HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
	LE to Yn; Figure 6	1.3	2.8	4.4	ns
	CP to Yn; Figure 8	1.4	3.2	4.9	ns
LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
	LE to Yn; Figure 6	1.3	2.8	4.4	ns
	CP to Yn; Figure 8	1.4	3.2	4.9	ns
OFF-state to HIGH propagation delay	OE to Yn; Figure 10	2 1.1	2.4	4.5	ns
OFF-state to LOW propagation delay	OE to Yn; Figure 10	2 1.1	2.4	4.5	ns
HIGH to OFF-state propagation delay	OE to Yn; Figure 10	<u>3</u> 1.3	2.4	4.8	ns
LOW to OFF-state propagation delay	OE to Yn; Figure 10	<u>3</u> 1.3	2.4	4.8	ns
pulse width	CP HIGH or LOW; Figure 8	3.3	0.7	-	ns
	LE HIGH; Figure 6	3.3	0.6	-	ns
set-up time	An to CP; Figure 9	1.0	-	-	ns
	An to LE; Figure 7	1.5	-	-	ns
hold time	An to CP; Figure 9	0.9	0.3	-	ns
	An to LE; Figure 7	1.4	0.4	-	ns
maximum input clock frequency	Figure 8	150	240	-	MHz
	LOW-to-HIGH propagation delay OFF-state to HIGH propagation delay OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state propagation delay pulse width set-up time hold time	HIGH-to-LOW propagation delay An to Yn; Figure 5 LE to Yn; Figure 8 LOW-to-HIGH propagation delay An to Yn; Figure 8 LOW-to-HIGH propagation delay An to Yn; Figure 5 LE to Yn; Figure 6 CP to Yn; Figure 8 OFF-state to HIGH propagation delay OE to Yn; Figure 10 OFF-state to LOW propagation delay HIGH to OFF-state propagation delay LOW to OFF-state propagation delay DE to Yn; Figure 10 LOW to OFF-state propagation delay DE to Yn; Figure 10 CP HIGH or LOW; Figure 8 LE HIGH; Figure 6 set-up time An to CP; Figure 9 An to LE; Figure 7 hold time An to CP; Figure 9 An to LE; Figure 7	HIGH-to-LOW propagation delay \[\begin{array}{c} \text{LE to Yn; Figure 5} & 1.0 \\ \text{LE to Yn; Figure 8} & 1.4 \\ \text{LOW-to-HIGH propagation delay} & \text{An to Yn; Figure 5} & 1.0 \\ \text{LE to Yn; Figure 5} & 1.0 \\ \text{LE to Yn; Figure 6} & 1.3 \\ \text{CP to Yn; Figure 8} & 1.4 \\ \text{OFF-state to HIGH propagation delay} & \text{OE to Yn; Figure 10} & 1.3 \\ \text{OFF-state to LOW propagation delay} & \text{OE to Yn; Figure 10} & 1.2 \\ \text{HIGH to OFF-state propagation delay} & \text{OE to Yn; Figure 10} & 1.3 \\ \text{LOW to OFF-state propagation delay} & \text{OE to Yn; Figure 10} & 1.3 \\ \text{LOW to OFF-state propagation delay} & \text{OE to Yn; Figure 10} & 1.3 \\ \text{LE HIGH; Figure 6} & 3.3 \\ \text{LE HIGH; Figure 6} & 3.3 \\ \text{Set-up time} & \text{An to CP; Figure 9} & 1.0 \\ \text{An to LE; Figure 7} & 1.5 \\ \text{hold time} & \text{An to LE; Figure 7} & 0.9 \\ \text{An to LE; Figure 7} & 1.4 \\ \end{array} \]	HIGH-to-LOW propagation delay An to Yn; Figure 5 1.0 2.8	HIGH-to-LOW propagation delay Et to Yn; Figure 5 1.0 2.8 4.3

^[1] All typical values are measured at V_{CC} = 3.3 V, T_{amb} = 25 $^{\circ}C.$

^{[2] 3-}state output enable time.

^{[3] 3-}state output disable time.

^{[2] 3-}state output enable time.

^{[3] 3-}state output disable time.

11.1 AC waveforms

 $V_{CC} = 3.0 \text{ V}$ to 3.6 V and $V_{CC} = 2.7 \text{ V}$ range:

$$V_M = 1.5 \text{ V}$$
; $V_X = V_{OL} + 0.3 \text{ V}$; $V_Y = V_{OH} - 0.3 \text{ V}$; $V_I = 2.7 \text{ V}$.

V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 V_{CC} = 2.3 V to 2.7 V and V_{CC} < 2.3 V range:

$$V_M = 0.5 \text{ V}; V_X = V_{OL} + 0.15 \text{ V}; V_Y = V_{OH} - 0.15 \text{ V}; V_I = V_{CC}.$$

V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

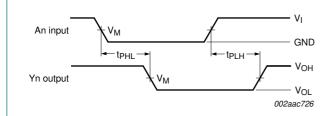


Fig 5. Input (An) to output (Yn) propagation delay

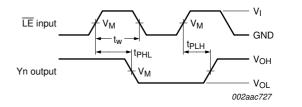
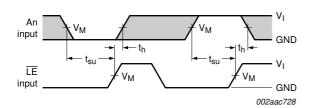



Fig 6. LE input pulse width, LE input to Yn output propagation delays

The shaded areas indicate when the input is permitted to change for predictable output performance

performance.

Fig 7. Data set-up and hold times, An input to

LE input

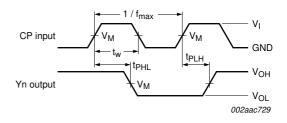
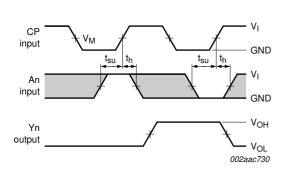



Fig 8. CP to Yn propagation delays, clock pulse width, and maximum clock frequency

The shaded areas indicate when the input is permitted to change for predictable output performance.

Fig 9. Data set-up and hold times, An input to CP input

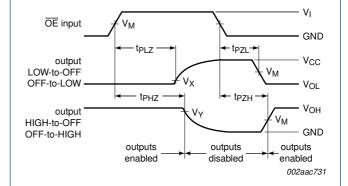
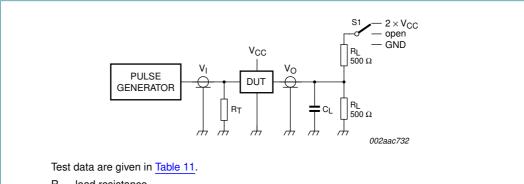



Fig 10. 3-state enable and disable times

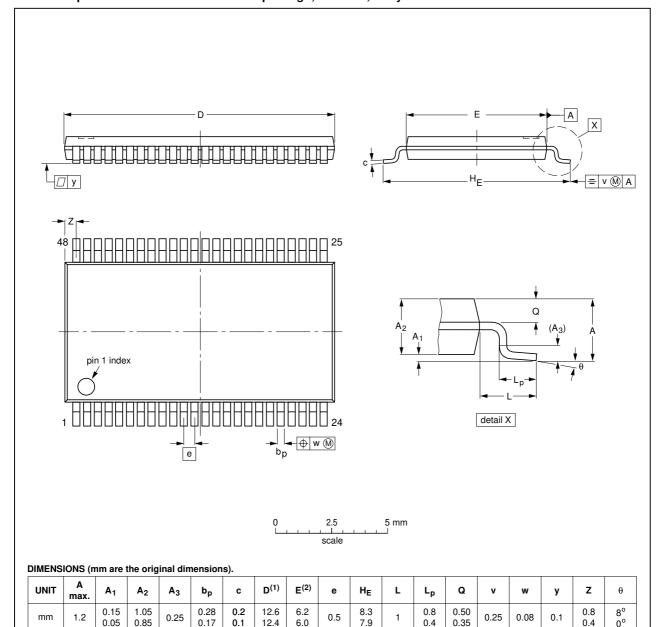
12. Test information

 R_L = load resistance.

 C_L = load capacitance includes jig and probe capacitance.

 R_T = termination resistance should be equal to Z_o of pulse generators.

Fig 11. Test circuitry for switching times


Table 11. Test data

Supply voltage V _{CC}	Input		Load		Switch S1		
	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.3 V to 2.7 V	V_{CC}	\leq 2.0 ns	30 pF	500Ω	open	GND (0 V)	$2\times V_{CC}$
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND (0 V)	$2\times V_{CC}$
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500Ω	open	GND (0 V)	$2\times V_{CC}$

13. Package outline

TSSOP48: plastic thin shrink small outline package; 48 leads; body width 6.1 mm

SOT362-1

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
SOT362-1		MO-153				99-12-27 03-02-19

Fig 12. Package outline SOT362-1 (TSSOP48)

14. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- · Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- · Package placement
- · Inspection and repair
- · Lead-free soldering versus PbSn soldering

14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 13</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

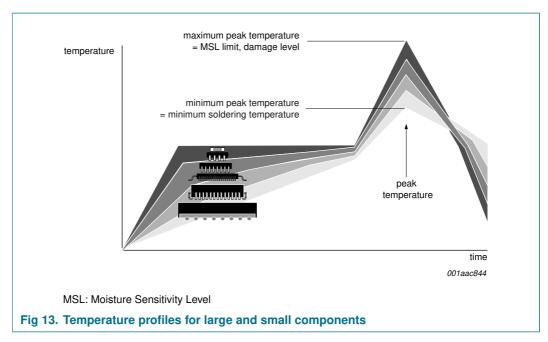

Package thickness (mm)	Package reflow temperature (°C) Volume (mm³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	

Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	ness (mm) Package reflow temperature (°C)				
	Volume (mm³)				
	< 350	350 to 2000	> 2000		
< 1.6	260	260	260		
1.6 to 2.5	260	250	245		
> 2.5	250	245	245		

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.

For further information on temperature profiles, refer to Application Note *AN10365* "Surface mount reflow soldering description".

15. Abbreviations

Table 14. Abbreviations

Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic

16. Revision history

Table 15. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes		
74ALVC162334A_3	20061213	Product data sheet	-	74ALVC162334A_2		
Modifications:	 The format of this data sheet has been redesigned to comply w NXP Semiconductors. 					
	 Legal texts have been adapted to the new company name where appropriate. 					
	 Section 1 "General description", 1st paragraph, 2nd sentence: changed "OE" to "OE" 					
	• Table 2 "Ordering information": changed (SOT364-1; TSSOP56) package to (SOT362-1;					
	TSSOP48) package					
	<u>Table 3 "Pin description"</u> corrected:					
	 changed "Y₁ to Y₁₈" to (Y1 to Y16, noted separately) 					
	– GND pins:	added pins 4 and 39				
	 V_{CC} pins changed from "7, 22, 35, 50" to "7, 18, 31, 42" 					
	 changed "A₁ to A₁₈" to (A1 to A16, noted separately) 					
	• Figure 1 "Logic	c symbol (IEEE/IEC)": corrected	d pin number for Y15	from "21" to "22"		

 Table 15.
 Revision history ...continued

Document ID	Release date	Data sheet status	Change notice	Supersedes			
Modifications: (continued)	 Figure 1 "Logic symbol (IEEE/IEC)": corrected pin number for Y15 from "21" to "22" 						
	• Figure 2 "Logic diagram":						
	changed signal "A₀" to "A1"						
	changed signal "Y₀" to "Y1"						
	 changed "to the 17 other channels" to "to the 15 other channels" 						
	• Table 5 "Limiting values" (title changed from "Absolute maximum ratings"):						
	 parameter definition of I_{IK} changed from "DC input diode current" to "input clamping current" 						
	 parameter definition of I_{OK} changed from "DC output diode current" to "output clamping current" 						
	symbol "I source cu	O" (DC output source or sink urrent)	current) changed to "IO	(sink/source)" (output sink or			
	removed	P _{tot} /pack information for SSG	OP package				
	• Table 7 "Static characteristics" (title changed from "DC electrical characteristics"):						
	changed symbol "I_I" to "I_{LI}"						
	 parameter definition of I_{OZ} changed from "3-State output OFF-state current" to "OFF-state output current" (moved "3-state" to Conditions column) 						
	 parameter definition of I_{CC} changed from "quiescent supply current" to "supply current" 						
	– parameter definition of ΔI_{CC} changed from "additional quiescent supply current" to "additional supply current"						
	 added C_i, C_{io}, and C_{PD} parameters 						
	 Section 11 "Dynamic characteristics": table "AC characteristics for V_{CC} = 3.0 V to 3.6 V range and V_{CC} = 2.7 V" separated into 2 tables 						
	Section 11.1 "AC waveforms":						
	 1st paragraph, 2nd line: changed "V_M = 1.5 V_{CC}" to "V_M = 1.5 V" 						
	 removed statement "V_M = 0.5V_{CC} at V_{CC} = 2.3 V to 2.7 V." from Figure 5, Figure 6, Figure 7, Figure 8, Figure 9 and Figure 10 as redundant (depends on voltage as stated above these figures) 						
	 <u>Section 13 "Package outline"</u>: replaced SOT364-1 (TSSOP56) package outline drawing with Figure 12 "Package outline SOT362-1 (TSSOP48)" 						
74ALVC162334A_2 (9397 750 07246)	20000620	Product specification	853-2197 23931	74ALVC162334A_1			
74ALVC162334A_1 (9397 750 06963)	20000314	Product specification	853-2197 23314	-			

17. Legal information

17.1 Data sheet status

Document status[1][2]	Product status[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

- [1] Please consult the most recently issued document before initiating or completing a design.
- [2] The term 'short data sheet' is explained in section "Definitions"
- [3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

17.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

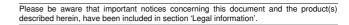
Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18 of 19


18. Contact information

For additional information, please visit: http://www.nxp.com

For sales office addresses, send an email to: salesaddresses@nxp.com

19. Contents

1	General description
2	Features
3	Quick reference data 2
4	Ordering information
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning
6.2	Pin description 4
7	Functional description 6
7.1	Function selection6
8	Limiting values 7
9	Recommended operating conditions 7
10	Static characteristics 8
11	Dynamic characteristics 9
11.1	AC waveforms11
12	Test information
13	Package outline
14	Soldering 14
14.1	Introduction to soldering
14.2	Wave and reflow soldering 14
14.3	Wave soldering
14.4	Reflow soldering
15	Abbreviations
16	Revision history 16
17	Legal information 18
17.1	Data sheet status
17.2	Definitions
17.3	Disclaimers
17.4	Trademarks18
18	Contact information 18
19	Contents

