imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

16-bit registered driver with inverted register enable and 30 Ω termination resistors (3-state)

Rev. 03 — 13 December 2006

Product data sheet

1. General description

The 74ALVC162334A is a 16-bit universal bus driver. Data flow is controlled by active LOW output enable (\overline{OE}), active LOW latch enable (\overline{LE}), and clock input (CP).

When $\overline{\text{LE}}$ is LOW, the A to Y data flow is transparent. When $\overline{\text{LE}}$ is HIGH and CP is held at LOW or HIGH, the data is latched; on the LOW to HIGH transient of CP, the A data is stored in the latch/flip-flop.

The 74ALVC162334A is designed with 30 Ω series resistors in both HIGH or LOW output stages.

When \overline{OE} is LOW, the outputs are active. When \overline{OE} is HIGH, the outputs go to the high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the latch/flip-flop.

To ensure the high-impedance state during power-up or power-down, \overline{OE} should be tied to V_{CC} through a pull-up resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

2. Features

- Wide supply voltage range of 1.2 V to 3.6 V
- Complies with JEDEC standard 8-1A
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive: ±24 mA at 3.0 V
- MULTIBYTE flow-through standard pinout architecture
- Low inductance multiple V_{CC} and GND pins for minimum noise and ground bounce
- Output drive capability 50 Ω transmission lines at 85 °C
- Integrated 30 Ω termination resistors
- Input diodes to accommodate strong drivers

16-bit registered driver (3-state)

3. Quick reference data

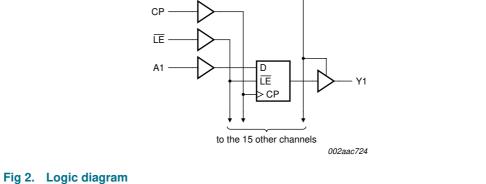
Table 1. Quick reference data

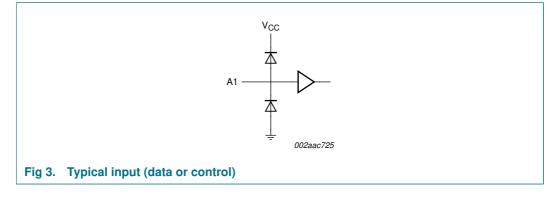
 $V_{CC} = 3.3 V \pm 0.3 V$; GND = 0 V; $t_r = t_f \le 2.5 ns$; $C_L = 50 pF$ (see Figure 11).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; <u>Figure 5</u>	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; <u>Figure 5</u>	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
f _{max}	maximum input clock frequency	Figure 8	150	240	-	MHz
Ci	input capacitance		-	4.0	-	pF
Cio	input/output capacitance		-	8.0	-	pF
C _{PD}	power dissipation capacitance	per buffer; $V_I = GND$ to V_{CC}	[2]			
		transparent mode; output enabled	-	10	-	pF
		transparent mode; output disabled	-	3	-	pF
		clocked mode; output enabled	-	21	-	pF
		clocked mode; output disabled	-	15	-	pF

[1] All typical values are at $T_{amb} = 25 \ ^{\circ}C$.

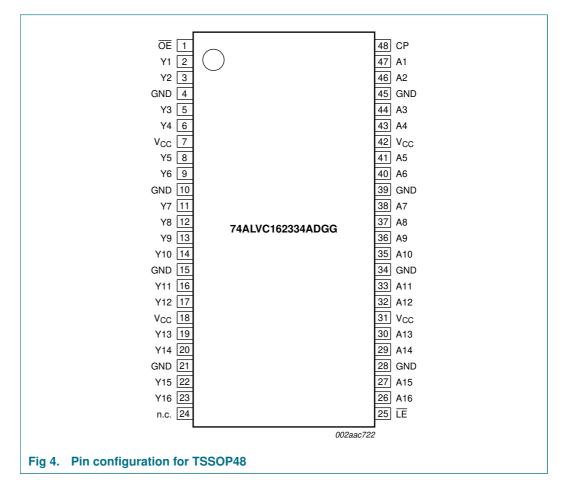

4. Ordering information


Table 2.Ordering information


Type number	Temperature	Package		
	range	Name	Description	Version
74ALVC162334ADGG	–40 °C to +85 °C	TSSOP48	plastic thin shrink small outline package; 48 leads; body width 6.1 mm	SOT362-1

16-bit registered driver (3-state)

5. Functional diagram



6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.Pin description

	i ili decomption	
Symbol	Pin	Description
ŌĒ	1	output enable input (active LOW)
Y1	2	data output 1
Y2	3	data output 2
GND	4, 10, 15, 21, 28, 34, 39, 45	ground supply (0 V)
Y3	5	data output 3
Y4	6	data output 4
V _{CC}	7, 18, 31, 42	positive supply voltage
Y5	8	data output 5
Y6	9	data output 6
Y7	11	data output 7
Y8	12	data output 8

16-bit registered driver (3-state)

Table 3.	Pin descr	ptioncontinued
Symbol	Pin	Description
Y9	13	data output 9
Y10	14	data output 10
Y11	16	data output 11
Y12	17	data output 12
Y13	19	data output 13
Y14	20	data output 14
Y15	22	data output 15
Y16	23	data output 16
n.c.	24	not connected
LE	25	latch enable input (active LOW)
A16	26	data input 16
A15	27	data input 15
A14	29	data input 14
A13	30	data input 13
A12	32	data input 12
A11	33	data input 11
A10	35	data input 10
A9	36	data input 9
A8	37	data input 8
A7	38	data input 7
A6	40	data input 6
A5	41	data input 5
A4	43	data input 4
A3	44	data input 3
A2	46	data input 2
A1	47	data input 1
СР	48	clock input

7. Functional description

Refer to Figure 1 "Logic symbol (IEEE/IEC)" and Figure 2 "Logic diagram".

7.1 Function selection

Table 4.Function selection

H = HIGH voltage level; *L* = LOW voltage level; *X* = Don't care; *Z* = high-impedance OFF-state; \uparrow = LOW to HIGH level transition.

Inputs	Outputs			
OE	LE	СР	An	Yn
Н	Х	Х	Х	Z
L	L	Х	L	L
L	L	Х	Н	Н
L	Н	↑	L	L
L	Н	\uparrow	Н	Н
L	Н	Н	Х	Y ₀ [1]
L	Н	L	Х	Y ₀ [2]

[1] Output level before the indicated steady-state input conditions were established, provided that CP is HIGH before LE goes LOW.

[2] Output level before the indicated steady-state input conditions were established.

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

0		,			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V	-	-50	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
Ι _{ΟΚ}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V	-	±50	mA
Vo	output voltage		<u>[1]</u> –0.5	$V_{CC} + 0.5$	V
I _{O(sink/source)}	output sink or source current	$V_{O} = 0 V$ to V_{CC}	-	±50	mA
I _{CC}	supply current		-	±100	mA
I _{GND}	ground current		-	±100	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot} /pack	total power dissipation per package	for temperature range –40 °C to +125 °C; above +55 °C derate linearly with 8 mW/K	-	600	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6.Operating conditions

	1 0					
Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{CC}	supply voltage	2.5 V range for maximum speed performance at 30 pF output load	2.3	-	2.7	V
		3.3 V range for maximum speed performance at 50 pF output load	3.0	-	3.6	V
		for low-voltage applications	1.2	-	3.6	V
VI	input voltage		0	-	V _{CC}	V
Vo	output voltage		0	-	V _{CC}	V
T _{amb}	ambient temperature	operating in free-air	-40	-	+85	°C
t _r	rise time	V _{CC} = 2.3 V to 3.0 V	0	-	20	ns/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0	-	10	ns/V
t _f	fall time	V _{CC} = 2.3 V to 3.0 V	0	-	20	ns/V
		V _{CC} = 3.0 V to 3.6 V	0	-	10	ns/V

10. Static characteristics

Table 7. Static characteristics

 $T_{amb} = -40 \degree C$ to +85 $\degree C$; over recommended operating conditions; voltages are referenced to GND (ground = 0 V); unless otherwise specified.

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
V _{IH}	HIGH-level input voltage	$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.7	1.2	-	V
		$V_{CC} = 2.7 \text{ V to } 3.6 \text{ V}$	2.0	1.5	-	V
V _{IL}	LOW-level input voltage	$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	-	1.2	0.7	V
		V _{CC} = 2.7 V to 3.6 V	-	1.5	0.8	V
V _{OH}	HIGH-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		V_{CC} = 2.3 V to 3.6 V; I_O = -100 μ A	$V_{CC} - 0.2$	V _{CC}	-	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = -4 \text{ mA}$	$V_{CC}-0.4$	V _{CC} - 0.11	-	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = -6 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} - 0.17	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -4 \text{ mA}$	$V_{CC} - 0.5$	$V_{CC} - 0.09$	-	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = -8 \text{ mA}$	$V_{CC} - 0.7$	V _{CC} – 0.19	-	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{O} = -6 \text{ mA}$	$V_{CC} - 0.6$	V _{CC} – 0.13	-	V
		$V_{CC} = 3.0 \text{ V}; \text{ I}_{O} = -12 \text{ mA}$	V _{CC} – 1.0	V _{CC} – 0.27	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		V_{CC} = 2.3 V to 3.6 V; I _O = 100 μ A	-	GND	0.20	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = 4 \text{ mA}$	-	0.07	0.40	V
		$V_{CC} = 2.3 \text{ V}; I_{O} = 6 \text{ mA}$	-	0.11	0.55	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = 4 \text{ mA}$	-	0.06	0.40	V
		$V_{CC} = 2.7 \text{ V}; I_{O} = 8 \text{ mA}$	-	0.13	0.60	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = 6 \text{ mA}$	-	0.09	0.55	V
		$V_{CC} = 3.0 \text{ V}; I_{O} = 12 \text{ mA}$	-	0.19	0.80	V
ILI	input leakage current	$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V};$ V _I = V _{CC} or GND	-	0.1	5	μA
I _{OZ}	off-state output current	3-state; V_{CC} = 2.3 V to 3.6 V; V _I = V _{IH} or V _{IL} ; V _O = V _{CC} or GND	-	0.1	10	μA
I _{CC}	supply current	V_{CC} = 2.3 V to 3.6 V; V _I = V _{CC} or GND; I _O = 0 mA	-	0.2	40	μA
ΔI_{CC}	additional supply current	$V_{CC} = 2.3 \text{ V to } 3.6 \text{ V};$ $V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ mA}$	-	150	750	μA
Ci	input capacitance		-	4.0	-	pF
Cio	input/output capacitance		-	8.0	-	pF
C _{PD}	power dissipation	per buffer; $V_I = GND$ to V_{CC}	[2]			
	capacitance	transparent mode; output enabled	-	10	-	pF
		transparent mode; output disabled	-	3	-	pF
		clocked mode; output enabled	-	21	-	pF

[1] All typical values are at T_{amb} = 25 $^\circ C.$

 $[2] \quad C_{PD} \text{ is used to determine the dynamic power dissipation (P_D) in } \mu W. \\ P_D = C_{PD} \times V_{CC}{}^2 \times f_i + \Sigma \; (C_L \times V_{CC}{}^2 \times f_o), \text{ where:}$

f_i = input frequency in MHz;

 C_L = output load capacitance in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; $F_0 = C_L + C_L + C_L$

 $\Sigma~(C_L \times V_{CC}{}^2 \times f_o)$ = sum of outputs.

11. Dynamic characteristics

Table 8.Dynamic characteristics for V_{CC} = 2.3 V to 2.7 V range

 $V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}; \text{ GND} = 0 \text{ V}; t_r = t_f \le 2.0 \text{ ns}; C_L = 30 \text{ pF} \text{ (see Figure 11)}.$

Symbol	Parameter	Conditions	Mi	n Typ <mark>[1</mark>	l Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	3.5	5.0	ns
		LE to Yn; Figure 6	1.3	3.5	5.0	ns
		CP to Yn; Figure 8	1.4	3.7	5.4	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	3.5	5.0	ns
		LE to Yn; Figure 6	1.3	3.5	5.0	ns
		CP to Yn; Figure 8	1.4	3.7	5.4	ns
t _{PZH}	OFF-state to HIGH propagation delay	OE to Yn; Figure 10	2 1.4	3.5	5.0	ns
t _{PZL}	OFF-state to LOW propagation delay	OE to Yn; Figure 10	2 1.4	3.5	5.0	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OE to Yn; Figure 10	<mark>3</mark> 1.0	2.8	4.5	ns
t _{PLZ}	LOW to OFF-state propagation delay	OE to Yn; Figure 10	<mark>3</mark> 1.0	2.8	4.5	ns
tw	pulse width	CP HIGH or LOW; Figure 8	3.3	1.0	-	ns
		LE HIGH; Figure 6	3.3	0.7	-	ns
t _{su}	set-up time	An to CP; Figure 9	1.0	-	-	ns
		An to LE; Figure 7	1.5	-	-	ns
t _h	hold time	An to CP; Figure 9	0.4	0.4	-	ns
		An to LE; Figure 7	1.4	0.4	-	ns
f _{max}	maximum input clock frequency	Figure 8	15	0 190	-	MHz

[1] All typical values are at V_{CC} = 2.5 V and T_{amb} = 25 °C.

[2] 3-state output enable time.

[3] 3-state output disable time.

Table 9. Dynamic characteristics for V_{CC} = 2.7 V

 $V_{CC} = 2.7 \text{ V}; \text{ GND} = 0 \text{ V}; t_r = t_f \le 2.5 \text{ ns}; C_L = 50 \text{ pF} \text{ (see Figure 11)}.$

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	3.3	4.6	ns
		LE to Yn; Figure 6	1.3	3.4	4.8	ns
		CP to Yn; Figure 8	1.4	3.8	6.2	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	3.3	4.6	ns
		LE to Yn; Figure 6	1.3	3.4	4.8	ns
		CP to Yn; Figure 8	1.4	3.8	6.2	ns
t _{PZH}	OFF-state to HIGH propagation delay	OE to Yn; Figure 10	^[2] 1.1	3.7	6.0	ns
t _{PZL}	OFF-state to LOW propagation delay	OE to Yn; Figure 10	^[2] 1.1	3.7	6.0	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OE to Yn; Figure 10	3 1.3	3.5	4.9	ns
t _{PLZ}	LOW to OFF-state propagation delay	OE to Yn; Figure 10	^[3] 1.3	3.5	4.9	ns

74ALVC162334A_3

16-bit registered driver (3-state)

$V_{CC} = 2.7 \text{ V}; \text{ GND} = 0 \text{ V}; t_r = t_f \le 2.5 \text{ ns}; C_L = 50 \text{ pF} (see Figure 11).$							
Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit	
t _w	pulse width	CP HIGH or LOW; Figure 8	3.3	1.2	-	ns	
		LE HIGH; Figure 6	3.3	0.6	-	ns	
t _{su}	set-up time	An to CP; Figure 9	1.0	-	-	ns	
		An to LE; Figure 7	1.5	-	-	ns	
t _h	hold time	An to CP; Figure 9	0.6	0.3	-	ns	
		An to LE; Figure 7	1.7	0.4	-	ns	
f _{max}	maximum input clock frequency	Figure 8	150	190	-	MHz	

Table 9.Dynamic characteristics for $V_{CC} = 2.7 V$... continued

[1] All typical values are measured at $T_{amb} = 25 \degree C$.

[2] 3-state output enable time.

[3] 3-state output disable time.

Table 10. Dynamic characteristics for $V_{CC} = 3.0$ V to 3.6 V range

 $V_{CC} = 3.3 V \pm 0.3 V$; GND = 0 V; $t_r = t_f \le 2.5 \text{ ns}$; $C_L = 50 \text{ pF}$ (see Figure 11).

Symbol	Parameter	Conditions	Min	Typ <mark>[1]</mark>	Max	Unit
t _{PHL}	HIGH-to-LOW propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
t _{PLH}	LOW-to-HIGH propagation delay	An to Yn; Figure 5	1.0	2.8	4.3	ns
		LE to Yn; Figure 6	1.3	2.8	4.4	ns
		CP to Yn; Figure 8	1.4	3.2	4.9	ns
t _{PZH}	OFF-state to HIGH propagation delay	OE to Yn; Figure 10	^[2] 1.1	2.4	4.5	ns
t _{PZL}	OFF-state to LOW propagation delay	OE to Yn; Figure 10	^[2] 1.1	2.4	4.5	ns
t _{PHZ}	HIGH to OFF-state propagation delay	OE to Yn; Figure 10	<u>3</u> 1.3	2.4	4.8	ns
t _{PLZ}	LOW to OFF-state propagation delay	OE to Yn; Figure 10	<u>3</u> 1.3	2.4	4.8	ns
t _w	pulse width	CP HIGH or LOW; Figure 8	3.3	0.7	-	ns
		LE HIGH; Figure 6	3.3	0.6	-	ns
t _{su}	set-up time	An to CP; Figure 9	1.0	-	-	ns
		An to LE; Figure 7	1.5	-	-	ns
t _h	hold time	An to CP; Figure 9	0.9	0.3	-	ns
		An to LE; Figure 7	1.4	0.4	-	ns
f _{max}	maximum input clock frequency	Figure 8	150	240	-	MHz

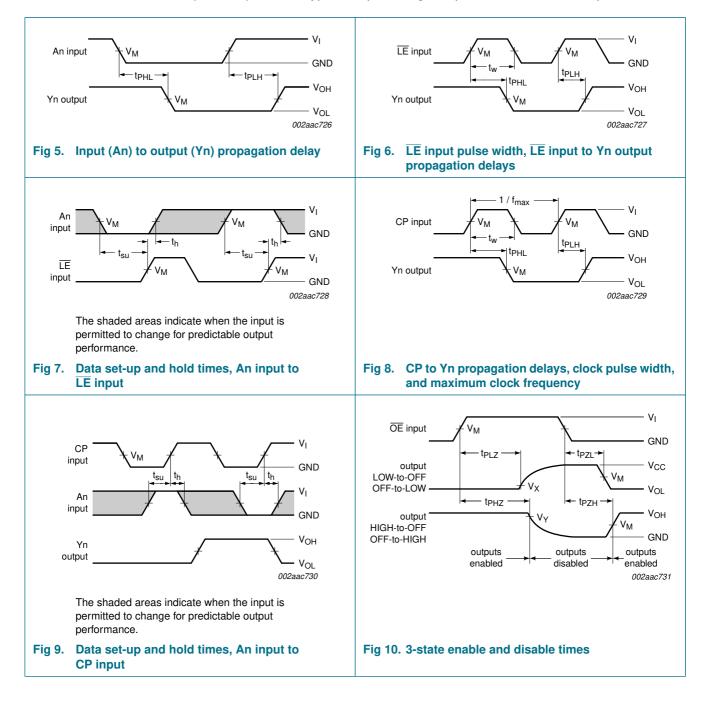
[1] All typical values are measured at V_{CC} = 3.3 V, T_{amb} = 25 $^\circ C.$

[2] 3-state output enable time.

[3] 3-state output disable time.

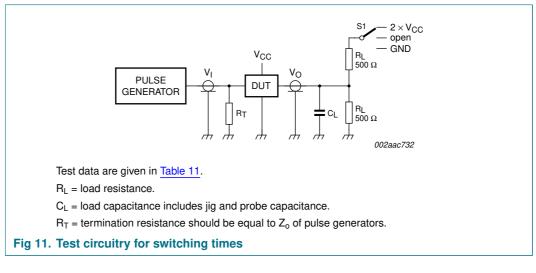
11.1 AC waveforms

 V_{CC} = 3.0 V to 3.6 V and V_{CC} = 2.7 V range:


 $V_{M} = 1.5 \text{ V}; V_{X} = V_{OL} + 0.3 \text{ V}; V_{Y} = V_{OH} - 0.3 \text{ V}; V_{I} = 2.7 \text{ V}.$

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

 V_{CC} = 2.3 V to 2.7 V and V_{CC} < 2.3 V range:


 $V_{M} = 0.5 V$; $V_{X} = V_{OL} + 0.15 V$; $V_{Y} = V_{OH} - 0.15 V$; $V_{I} = V_{CC}$.

 V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.

74ALVC162334A_3 Product data sheet

12. Test information

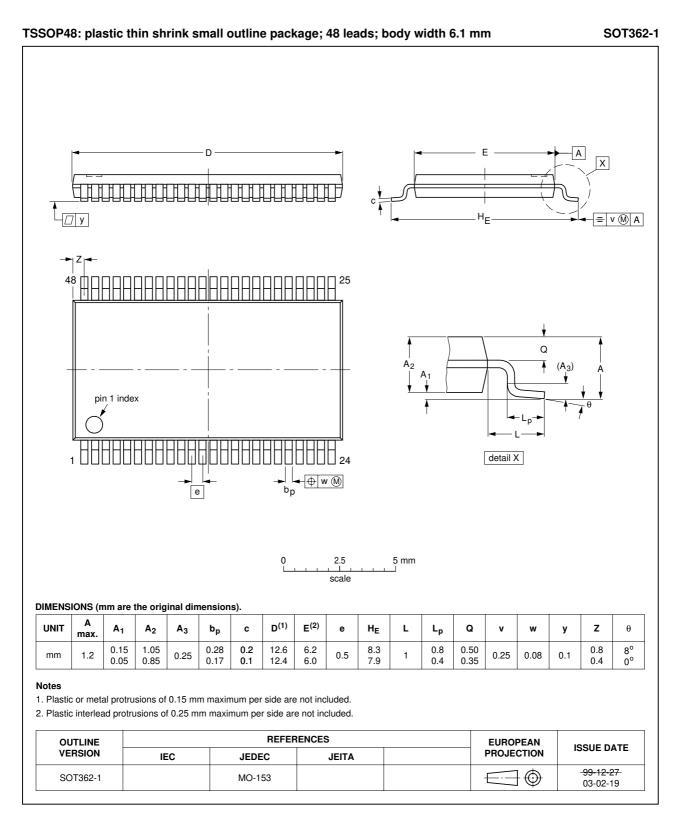


Table 11. Test data

Supply voltage	Input		Load		Switch S1		
V _{cc}	VI	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
2.3 V to 2.7 V	V _{CC}	≤ 2.0 ns	30 pF	500 Ω	open	GND (0 V)	$2 \times V_{CC}$
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND (0 V)	$2 \times V_{CC}$
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	GND (0 V)	$2 \times V_{CC}$

16-bit registered driver (3-state)

13. Package outline

Fig 12. Package outline SOT362-1 (TSSOP48)

14. Soldering

This text provides a very brief insight into a complex technology. A more in-depth account of soldering ICs can be found in Application Note *AN10365 "Surface mount reflow soldering description"*.

14.1 Introduction to soldering

Soldering is one of the most common methods through which packages are attached to Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both the mechanical and the electrical connection. There is no single soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high densities that come with increased miniaturization.

14.2 Wave and reflow soldering

Wave soldering is a joining technology in which the joints are made by solder coming from a standing wave of liquid solder. The wave soldering process is suitable for the following:

- Through-hole components
- · Leaded or leadless SMDs, which are glued to the surface of the printed circuit board

Not all SMDs can be wave soldered. Packages with solder balls, and some leadless packages which have solder lands underneath the body, cannot be wave soldered. Also, leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered, due to an increased probability of bridging.

The reflow soldering process involves applying solder paste to a board, followed by component placement and exposure to a temperature profile. Leaded packages, packages with solder balls, and leadless packages are all reflow solderable.

Key characteristics in both wave and reflow soldering are:

- · Board specifications, including the board finish, solder masks and vias
- · Package footprints, including solder thieves and orientation
- · The moisture sensitivity level of the packages
- Package placement
- Inspection and repair
- Lead-free soldering versus PbSn soldering

14.3 Wave soldering

Key characteristics in wave soldering are:

- Process issues, such as application of adhesive and flux, clinching of leads, board transport, the solder wave parameters, and the time during which components are exposed to the wave
- · Solder bath specifications, including temperature and impurities

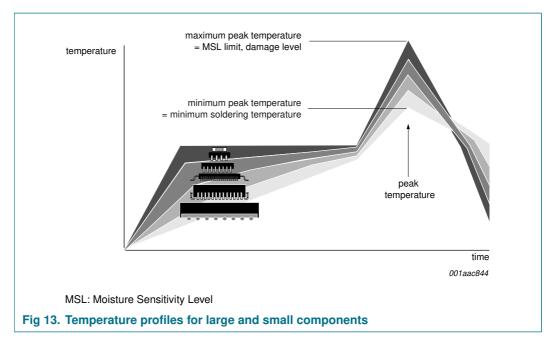
14.4 Reflow soldering

Key characteristics in reflow soldering are:

- Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to higher minimum peak temperatures (see <u>Figure 13</u>) than a PbSn process, thus reducing the process window
- Solder paste printing issues including smearing, release, and adjusting the process window for a mix of large and small components on one board
- Reflow temperature profile; this profile includes preheat, reflow (in which the board is heated to the peak temperature) and cooling down. It is imperative that the peak temperature is high enough for the solder to make reliable solder joints (a solder paste characteristic). In addition, the peak temperature must be low enough that the packages and/or boards are not damaged. The peak temperature of the package depends on package thickness and volume and is classified in accordance with Table 12 and 13

Table 12. SnPb eutectic process (from J-STD-020C)

Package thickness (mm)	Package reflow temperature (°C	:)	
	Volume (mm ³)		
	< 350	≥ 350	
< 2.5	235	220	
≥ 2.5	220	220	


Table 13. Lead-free process (from J-STD-020C)

Package thickness (mm)	Package reflow tem	perature (°C)	
	Volume (mm ³)		
	< 350	350 to 2000	> 2000
< 1.6	260	260	260
1.6 to 2.5	260	250	245
> 2.5	250	245	245

Moisture sensitivity precautions, as indicated on the packing, must be respected at all times.

Studies have shown that small packages reach higher temperatures during reflow soldering, see Figure 13.

16-bit registered driver (3-state)

For further information on temperature profiles, refer to Application Note *AN10365 "Surface mount reflow soldering description"*.

15. Abbreviations

Table 14.	Abbreviations
Acronym	Description
CMOS	Complementary Metal Oxide Semiconductor
TTL	Transistor-Transistor Logic

16. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74ALVC162334A_3	20061213	Product data sheet	-	74ALVC162334A_2	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have been adapted to the new company name where appropriate. 				
	 Section 1 "General description", 1st paragraph, 2nd sentence: changed "OE" to "OE" 				
	 Table 2 "Ordering information": changed (SOT364-1; TSSOP56) package to (SOT362-1; TSSOP48) package 				
	<u>Table 3 "Pin description"</u> corrected:				
	- changed " Y_1 to Y_{18} " to (Y1 to Y16, noted separately)				
	 GND pins: added pins 4 and 39 				
	 V_{CC} pins changed from "7, 22, 35, 50" to "7, 18, 31, 42" 				
	 changed 	"A ₁ to A_{18} " to (A1 to A16, no	oted separately)		
	Figure 1 "Lo	gic symbol (IEEE/IEC)": cor	rected pin number for Y1	5 from "21" to "22"	

NXP Semiconductors

74ALVC162334A

16-bit registered driver (3-state)

Document ID	Release date	Data sheet status	Change notice	Supersedes	
Modifications: (continued)	 Figure 1 "Lo Figure 2 "Lo changeo changeo changeo changeo Table 5 "Lin paramet paramet 	pgic symbol (IEEE/IEC)": cor pgic diagram": I signal "A ₀ " to "A1" I signal "Y ₀ " to "Y1" I "to the 17 other channels" t <u>hiting values"</u> (title changed f	rected pin number for Y1 o "to the 15 other channe rom "Absolute maximum om "DC input diode curre	5 from "21" to "22" els" ratings"): ent" to "input clamping current	
	 current" symbol "I_O" (DC output source or sink current) changed to "I_{O(sink/source)}" (output sink or source current) removed P_{tot}/pack information for SSOP package 				
	 <u>Table 7 "Static characteristics"</u> (title changed from "DC electrical characteristics"): changed symbol "I₁" to "I_{LI}" parameter definition of I_{OZ} changed from "3-State output OFF-state current" to "OFF-state output current" (moved "3-state" to Conditions column) 				
	 parameter definition of I_{CC} changed from "quiescent supply current" to "supply current" parameter definition of ΔI_{CC} changed from "additional quiescent supply current" to "additional supply current" 				
	 <u>Section 11</u> and V_{CC} = 2 <u>Section 11</u>. 	ⁱ , C _{io} , and C _{PD} parameters <u>"Dynamic characteristics"</u> : ta 2.7 V" separated into 2 table <u>1 "AC waveforms"</u> : graph, 2 nd line: changed "V _M	3	or V _{CC} = 3.0 V to 3.6 V range	
	 removed Figure 8 figures) Section 13 	I statement " $V_M = 0.5V_{CC}$ at , Figure 9 and Figure 10 as "Package outline": replaced	$V_{CC} = 2.3$ V to 2.7 V." from redundant (depends on v SOT364-1 (TSSOP56) pa	n <u>Figure 5, Figure 6, Figure 7,</u> oltage as stated above these	
74ALVC162334A_2 (9397 750 07246)	20000620	Package outline SOT362-1 (Product specification	853-2197 23931	74ALVC162334A_1	
74ALVC162334A_1 (9397 750 06963)	20000314	Product specification	853-2197 23314	-	

Table 15. Revision history ...continued

17. Legal information

17.1 Data sheet status

Document status ^{[1][2]}	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

17.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

17.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of a NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

17.4 Trademarks

Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

18. Contact information

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, send an email to: salesaddresses@nxp.com

16-bit registered driver (3-state)

19. Contents

1	General description 1
2	Features 1
3	Quick reference data 2
4	Ordering information 2
5	Functional diagram 3
6	Pinning information 4
6.1	Pinning 4
6.2	Pin description 4
7	Functional description 6
7.1	Function selection 6
8	Limiting values 7
9	Recommended operating conditions7
10	Static characteristics 8
11	Dynamic characteristics 9
11.1	AC waveforms 11
12	Test information 12
13	Package outline 13
14	Soldering 14
14.1	Introduction to soldering 14
14.1	
14.2	Wave and reflow soldering 14
14.2 14.3	Wave and reflow soldering14Wave soldering14
14.2 14.3 14.4	Wave and reflow soldering14Wave soldering14Reflow soldering15
14.2 14.3 14.4 15	Wave and reflow soldering14Wave soldering14Reflow soldering15Abbreviations16
14.2 14.3 14.4 15 16	Wave and reflow soldering14Wave soldering14Reflow soldering15Abbreviations16Revision history16
14.2 14.3 14.4 15 16 17	Wave and reflow soldering14Wave soldering14Reflow soldering15Abbreviations16Revision history16Legal information18
14.2 14.3 14.4 15 16 17 17.1	Wave and reflow soldering14Wave soldering14Reflow soldering15Abbreviations16Revision history16Legal information18Data sheet status18
14.2 14.3 14.4 15 16 17 17.1 17.2	Wave and reflow soldering14Wave soldering14Reflow soldering15Abbreviations16Revision history16Legal information18Data sheet status18Definitions18
14.2 14.3 14.4 15 16 17 17.1 17.2 17.3	Wave and reflow soldering 14 Wave soldering 14 Reflow soldering 15 Abbreviations 16 Revision history 16 Legal information 18 Data sheet status 18 Definitions 18 Disclaimers 18
14.2 14.3 14.4 15 16 17 17.1 17.2 17.3 17.4	Wave and reflow soldering 14 Wave soldering 14 Reflow soldering 15 Abbreviations 16 Revision history 16 Legal information 18 Data sheet status 18 Definitions 18 Disclaimers 18 Trademarks 18
14.2 14.3 14.4 15 16 17 17.1 17.2 17.3	Wave and reflow soldering 14 Wave soldering 14 Reflow soldering 15 Abbreviations 16 Revision history 16 Legal information 18 Data sheet status 18 Definitions 18 Disclaimers 18

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2006.

All rights reserved.

For more information, please visit: http://www.nxp.com For sales office addresses, please send an email to: salesaddresses@nxp.com

Date of release: 13 December 2006 Document identifier: 74ALVC162334A_3