: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74ALVC16373

Low-Voltage 1.8/2.5/3.3 V 16-Bit Transparent Latch With 3.6 V -Tolerant Inputs and Outputs (3-State, Non-Inverting)

The 74ALVC16373 is an advanced performance, non-inverting 16-bit transparent latch. It is designed for very high-speed, very low-power operation in $1.8 \mathrm{~V}, 2.5 \mathrm{~V}$ or 3.3 V systems. The ALVC16373 is byte controlled, with each byte functioning identically, but independently. Each byte has separate Output Enable and Latch Enable inputs. These control pins can be tied together for full 16-bit operation.

The 74ALVC16373 contains 16 D-type latches with 3-state 3.6 V-tolerant outputs. When the Latch Enable (LEn) inputs are HIGH, data on the Dn inputs enters the latches. In this condition, the latches are transparent, (a latch output will change state each time its D input changes). When LE is LOW, the latch stores the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-state outputs are controlled by the Output Enable ($\overline{\mathrm{OEn}}$) inputs. When $\overline{\mathrm{OE}}$ is LOW, the outputs are enabled. When $\overline{\mathrm{OE}}$ is HIGH , the standard outputs are in the high impedance state, but this does not interfere with new data entering into the latches.

- Designed for Low Voltage Operation: $\mathrm{V}_{\mathrm{CC}}=1.65-3.6 \mathrm{~V}$
- 3.6V Tolerant Inputs and Outputs
- High Speed Operation: 3.6 ns max for 3.0 to 3.6 V 4.5 ns max for 2.3 to 2.7 V 6.8 ns max for 1.65 to 1.95 V
- Static Drive: $\pm 24 \mathrm{~mA}$ Drive at 3.0 V $\pm 12 \mathrm{~mA}$ Drive at 2.3 V $\pm 4 \mathrm{~mA}$ Drive at 1.65 V

PIN NAMES

Pins	Function
OEn	Output Enable Inputs
LEn	Latch Enable Inputs
D0-D15	Inputs
O0-O15	Outputs

- Supports Live Insertion and Withdrawal
- I IFF Specification Guarantees High Impedance When $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}^{\dagger}$
- Near Zero Static Supply Current in All Three Logic States ($40 \mu \mathrm{~A}$) Substantially Reduces System Power Requirements
- Latchup Performance Exceeds $\pm 250 \mathrm{~mA} @ 125^{\circ} \mathrm{C}$
- ESD Performance: Human Body Model >2000 V; Machine Model >200 V
- Second Source to Industry Standard 74ALVC16373
\dagger To ensure the outputs activate in the 3-state condition, the output enable pins should be connected to V_{CC} through a pull-up resistor. The value of the resistor is determined by the current sinking capability of the output connected to the $\overline{\mathrm{OE}}$ pin.

ON Semiconductor ${ }^{\circledR}$
http://onsemi.com

ORDERING INFORMATION

Device	Package	Shipping
74ALVC16373DTR	TSSOP	2500/Tape \& Reel

Figure 1. 48-Lead Pinout (Top View)

Figure 2. Logic Diagram

Figure 3. IEC Logic Diagram

Inputs			Outputs		Inputs		
LE1	$\overline{\text { OE1 }}$	D0:7	O0:7	LE2	$\overline{\text { OE2 }}$	D8:15	Outputs
X	H	X	Z	X	H	X	O8:15
H	L	L	L	H	L	L	Z
H	L	H	H	H	L	H	L
L.	L	X	O0	L	L	X	H

H = High Voltage Level; L = Low Voltage Level; Z = High Impedance State; X = High or Low Voltage Level and Transitions Are Acceptable, for ICc reasons, DO NOT FLOAT Inputs. OO = No Change.

74ALVC16373

MAXIMUM RATINGS (Note 1)

Symbol	Parameter	Value	Unit
$\mathrm{V}_{\text {cc }}$	DC Supply Voltage	-0.5 to +4.6	V
V_{1}	DC Input Voltage	-0.5 to +4.6	V
V_{O}	DC Output Voltage	-0.5 to +4.6	V
I_{IK}	DC Input Diode Current $\quad \mathrm{V}_{1}<\mathrm{GND}$	-50	mA
IOK	DC Output Diode Current $\quad \mathrm{V}_{\mathrm{O}}<\mathrm{GND}$	-50	mA
I_{0}	DC Output Sink/Source Current	± 50	mA
ICC	DC Supply Current per Supply Pin	± 100	mA
$\mathrm{I}_{\text {GND }}$	DC Ground Current per Ground Pin	± 100	mA
TSTG	Storage Temperature Range	-65 to +150	${ }^{\circ} \mathrm{C}$
T_{L}	Lead Temperature, 1 mm from Case for 10 Seconds	260	${ }^{\circ} \mathrm{C}$
T_{J}	Junction Temperature Under Bias	+150	${ }^{\circ} \mathrm{C}$
$\theta_{\text {JA }}$	Thermal Resistance (Note 2)	90 -	${ }^{\circ} \mathrm{C} / \mathrm{W}$
MSL	Moisture Sensitivity	Level 1	
F_{R}	Flammability Rating Oxygen Index: 30\% - 35\%	UL-94 V-0 @ 0.125 in	
$\mathrm{V}_{\mathrm{ESD}}$	ESD Withstand Voltage Human Body Model (Note 3) Machine Model (Note 4) Charged Device Model (Note 5)	$\begin{gathered} >2000 \\ >200 \\ N / A \end{gathered}$	V
ILATCH-UP	Latch-Up Performance \quad Above V_{CC} and Below GND at $125^{\circ} \mathrm{C}$ ((ote 6)	$\pm \pm 250$	mA

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

1. I_{O} absolute maximum rating must be observed.
2. Measured with minimum pad spacing on an FR4 board, using 10 mm -by-1 inch, 2-ounce copper trace with no air flow.
3. Tested to EIA/JESD22-A114-A.
4. Tested to EIA/JESD22-A115-A.
5. Tested to JESD22-C101-A.
6. Tested to EIA/JESD78.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Min	Typ	Max	Unit
V_{CC}	Supply Voltage Operating	$\begin{gathered} \hline 1.65 \\ 1.2 \end{gathered}$	$\begin{aligned} & 3.3 \\ & 3.3 \end{aligned}$	$\begin{aligned} & \hline 3.6 \\ & 3.6 \end{aligned}$	V
V_{1}	Input Voltage (Note 7)	-0.5		3.6	V
V_{O}	Output Voltage (Active State) (3-State)	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{gathered} \mathrm{V}_{\mathrm{CC}} \\ 3.6 \end{gathered}$	V
$\mathrm{T}_{\text {A }}$	Operating Free-Air Temperature	-40		+85	${ }^{\circ} \mathrm{C}$
$\Delta t / \Delta \mathrm{V}$	Input Transition Rise or Fall Rate, $\mathrm{V}_{\text {IN }}$ from 0.8 V to $2.0 \mathrm{~V}, \mathrm{~V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ $\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} \pm 0.3 \mathrm{~V}$	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 20 \\ & 10 \end{aligned}$	ns/V

7. Unused inputs may not be left open. All inputs must be tied to a high-logic voltage level or a low-logic input voltage level.

DC ELECTRICAL CHARACTERISTICS

Symbol	Characteristic	Condition	$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$		Unit
			Min	Max	
V_{IH}	HIGH Level Input Voltage (Note 8)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<2.3 \mathrm{~V}$	$0.65 \times \mathrm{V}_{\text {CC }}$		V
		$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$	1.7		
		$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$	2.0		
VIL	LOW Level Input Voltage (Note 8)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}}<2.3 \mathrm{~V}$		$0.35 \times \mathrm{V}_{\mathrm{CC}}$	V
		$2.3 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$		0.7	
		$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$		0.8	
V_{OH}	HIGH Level Output Voltage	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V}$; $\mathrm{I}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$	$\mathrm{V}_{\mathrm{CC}}-0.2$		V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-4 \mathrm{~mA}$	1.2		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-6 \mathrm{~mA}$	2.0		
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	- 1.7		
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.2	n	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{I}_{\mathrm{OH}}=-12 \mathrm{~mA}$	2.4		
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-24 \mathrm{~mA}$	2.0		
$\mathrm{V}_{\text {OL }}$	LOW Level Output Voltage	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=100 \mu \mathrm{~A}$		0.2	V
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=4 \mathrm{~mA}$	\bigcirc	0.45	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=6 \mathrm{~mA}$	-	0.4	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.7	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=12 \mathrm{~mA}$		0.4	
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V} ; \mathrm{IOL}=24 \mathrm{~mA}$	\bigcirc	0.55	
I_{1}	Input Leakage Current	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{1} \leq 3.6 \mathrm{~V}$		± 5.0	$\mu \mathrm{A}$
I_{OZ}	3-State Output Current	$\begin{gathered} 1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 0 \mathrm{~V} \leq \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}_{i} \\ \mathrm{~V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}} \text { or } \mathrm{V}_{\text {IV }} \end{gathered}$		± 10	$\mu \mathrm{A}$
IOFF	Power-Off Leakage Current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{1}$ or $\mathrm{V}_{\mathrm{O}}=3.6 \mathrm{~V}$		10	$\mu \mathrm{A}$
I_{CC}	Quiescent Supply Current (Note 9)	$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{1}=$ GND or $\mathrm{V}_{\text {CC }}$		40	$\mu \mathrm{A}$
		$1.65 \mathrm{~V} \leq \mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; 3.6 \mathrm{~V} \leq \mathrm{V}_{\mathrm{l}}, \mathrm{V}_{\mathrm{O}} \leq 3.6 \mathrm{~V}$		± 40	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	Increase in ICC per Input	$2.7 \mathrm{~V}<\mathrm{V}_{\mathrm{CC}} \leq 3.6 \mathrm{~V} ; \mathrm{V}_{\mathrm{IH}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$		750	$\mu \mathrm{A}$

8. These values of V_{1} are used to test DC electrical characteristics only.
9. Outputs disabled or 3-state only.

74ALVC16373

AC CHARACTERISTICS (Note $10 ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.0 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=30 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega$)

Symbol	Parameter	Waveform	Limits						Unit
			$\mathrm{T}_{\mathrm{A}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
			$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V		$\mathrm{V}_{\mathrm{CC}}=1.65$ to 1.95 V		
			Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \mathrm{t}_{\mathrm{PLLH}} \\ & \mathrm{t}_{\text {PHL }} \end{aligned}$	Propagation Delay Dn to On	1	$\begin{aligned} & 1.1 \\ & 1.1 \end{aligned}$	$\begin{aligned} & 3.6 \\ & 3.6 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.5 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 6.8 \\ & 6.8 \end{aligned}$	ns
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PH}} \end{aligned}$	Propagation Delay LE to On	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 3.9 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 4.9 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 7.8 \\ & 7.8 \end{aligned}$	ns
$\begin{array}{\|l\|l\|l\|} \hline \text { tpZH } \\ \mathrm{t}_{\text {pZL }} \end{array}$	Output Enable Time to High and Low Level	2	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 4.7 \end{aligned}$	$\begin{aligned} & \hline 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 6.0 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 9.2 \end{aligned}$	ns
$\begin{array}{\|l\|l\|l\|} \hline \text { tPHZ } \\ t_{\text {PLZ }} \end{array}$	Output Disable Time From High and Low Level	2	$\begin{aligned} & 1.4 \\ & 1.4 \end{aligned}$	$\begin{aligned} & 4.1 \\ & 4.1 \end{aligned}$	$\begin{aligned} & 1.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 5.1 \\ & 5.1 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 6.8 \\ & 6.8 \end{aligned}$	ns
$\mathrm{t}_{\text {s }}$	Setup Time, High or Low Dn to LE	3	1.1		1.0	-	2.5		ns
t_{n}	Hold Time, High or Low Dn to LE	3	1.4		1.5		1.0		ns
t_{w}	LE Pulse Width, High	3	3.3		3.3		4.0		ns
$\begin{aligned} & \text { toshl } \\ & \text { tosLH } \\ & \hline \end{aligned}$	Output-to-Output Skew (Note 11)			$\begin{aligned} & \hline 0.5 \\ & 0.5 \\ & \hline \end{aligned}$	\checkmark	$\begin{aligned} & 0.5 \\ & 0.5 \\ & \hline \end{aligned}$		$\begin{aligned} & 0.75 \\ & 0.75 \\ & \hline \end{aligned}$	ns

10. For $\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$, add approximately 300 ps to the AC maximum specification.
11. Skew is defined as the absolute value of the difference between the actual propagation delay for any two separate outputs of the same device. The specification applies to any outputs switching in the same direction, either HIGH-to-LOW (t OSHL) or LOW-to-HIGH (tosLh); parameter guaranteed by design.

CAPACITIVE CHARACTERISTICS

Symbol	Parameter	Condition	Typical	Unit
C_{IN}	Input Capacitance	Note 12	6	pF
$\mathrm{C}_{\text {OUT }}$	Output Capacitance	Note 12	7	pF
C_{PD}	Power Dissipation Capacitance	Note $12,10 \mathrm{MHz}$	pF	

12. $\mathrm{V}_{\mathrm{CC}}=1.8,2.5$ or $3.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0 \mathrm{~V}$ or V_{CC}.

74ALVC16373

WAVEFORM 1 - PROPAGATION DELAYS
$t_{R}=t_{F}=2.0 n s, 10 \%$ to $90 \% ; f=1 \mathrm{MHz} ; t_{W}=500 \mathrm{~ns}$
Figure 4. AC Waveforms

Figure 5. AC Waveforms

	$\mathrm{V}_{\mathbf{C C}}$		
Symbol	$\mathbf{3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	$\mathbf{1 . 8 V} \pm \mathbf{0 . 1 5 V}$
	2.7 V	$\mathrm{~V}_{\mathrm{CC}}$	V_{CC}
	1.5 V	$\mathrm{~V}_{\mathrm{CC}} / 2$	$\mathrm{~V}_{\mathrm{CC}} / 2$
$\mathrm{~V}_{\mathrm{x}}$	$\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OL}}+0.15 \mathrm{~V}$
$\mathrm{~V}_{\mathrm{y}}$	$\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$	$\mathrm{~V}_{\mathrm{OH}}-0.15 \mathrm{~V}$

74ALVC16373

TEST	SWITCH
$t_{\text {PLH }}, t_{\text {PHL }}$	Open
$t_{\text {PZL }}, t_{\text {PLZ }}$	6 V at $\mathrm{V}_{\mathrm{CC}}=3.3 \pm 0.3 \mathrm{~V} ;$
	$\mathrm{V}_{\mathrm{CC}} \times 2$ at $\mathrm{V}_{\mathrm{CC}}=2.5 \pm 0.2 \mathrm{~V} ; 1.8 \mathrm{~V} \pm 0.15 \mathrm{~V}$
$t_{\text {PZH }}, t_{\text {PHZ }}$	GND

$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$ or equivalent (Includes jig and probe capacitance)
$R_{L}=500 \Omega$ or equivalent
$\mathrm{R}_{\mathrm{T}}=\mathrm{Z}_{\mathrm{OUT}}$ of pulse generator (typically 50Ω)
Figure 6. Test Circuit

Figure 7. Carrier Tape Specifications

EMBOSSED CARRIER DIMENSIONS (See Notes 1 and 2)

Tape Size	$\begin{aligned} & B_{1} \\ & \operatorname{Max} \end{aligned}$	D	D_{1}	E	F	K	P	P_{0}	P_{2}	R	T	W
24 mm	$\begin{aligned} & 20.1 \mathrm{~mm} \\ & \left(0.7911^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.5+0.1 \mathrm{~mm} \\ -0.0 \\ (0.059 \\ \left.+0.004^{\prime \prime}-0.0\right) \end{gathered}$	$\begin{aligned} & 1.5 \mathrm{~mm} \\ & \operatorname{Min} \\ & \left(0.060^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 1.75 \\ \pm 0.1 \mathrm{~mm} \\ (0.069 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 11.5 \\ \pm 0.10 \mathrm{~mm} \\ (0.453 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	11.9 mm Max (0.468")	$\begin{gathered} 16.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.63 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 4.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.157 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{gathered} 2.0 \\ \pm 0.1 \mathrm{~mm} \\ (0.079 \\ \left. \pm 0.004^{\prime \prime}\right) \end{gathered}$	$\begin{aligned} & 30 \mathrm{~mm} \\ & \left(1.18^{\prime \prime}\right) \end{aligned}$	$\begin{aligned} & 0.6 \mathrm{~mm} \\ & \left(0.024^{\prime \prime}\right) \end{aligned}$	$\begin{gathered} 24.3 \mathrm{~mm} \\ \left(0.957^{\prime \prime}\right) \end{gathered}$

[^0]2. $\mathrm{A}_{0}, \mathrm{~B}_{0}$, and K_{0} are determined by component size. The clearance between the components and the cavity must be within 0.05 mm min to 0.50 mm max. The component cannot rotate more than 10° within the determined cavity.

74ALVC16373

Figure 8. Reel Dimensions

REEL DIMENSIONS

Tape Size	A Max	G	t Max
24 mm	360 mm $\left(14.173^{\prime \prime}\right)$	$24.4 \mathrm{~mm}+2.0 \mathrm{~mm},-0.0$ $\left(0.961^{\prime \prime}+0.078^{\prime \prime},-0.00\right)$	30.4 mm $\left(1.197^{\prime \prime}\right)$

Figure 9. Reel Winding Direction

Figure 10. Tape Ends for Finished Goods

Figure 11. Reel Configuration

Figure 12. Package Footprint

74ALVC16373

PACKAGE DIMENSIONS

TSSOP
DT SUFFIX
CASE 1201-01
ISSUE A

[^1]
PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT

Literature Distribution Center for ON Semiconductor
P.O. Box 5163, Denver, Colorado 80217 USA

Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canad
Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com
N. American Technical Support: 800-282-9855 Toll Free

USA/Canada
Europe, Middle East and Africa Technical Support:
Phone: 421337902910
Japan Customer Focus Center
Phone: 81-3-5773-3850

ON Semiconductor Website: www.onsemi.com
Order Literature: http://www.onsemi.com/orderlit
For additional information, please contact your local Sales Representative

[^0]: 1. Metric Dimensions Govern-English are in parentheses for reference only.
[^1]: ON Semiconductor and 010 are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

