

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

CMOS 16-BIT 3.3V TO 5V LEVEL SHIFTING TRANSCEIVER WITH 3-STATE OUTPUTS

IDT74ALVC164245

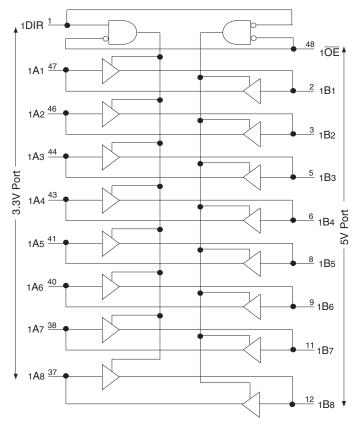
FEATURES:

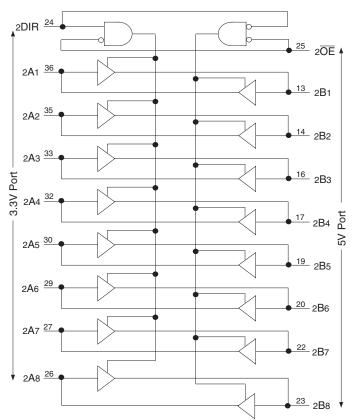
- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- VCCA = 2.7V to 3.6V
- VCCB = $5V \pm 0.5V$
- CMOS power levels (0.4 w typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in SSOP and TSSOP packages

DRIVE FEATURES:

- High Output Drivers: ±24mA
- · Suitable for heavy loads

DESCRIPTION:

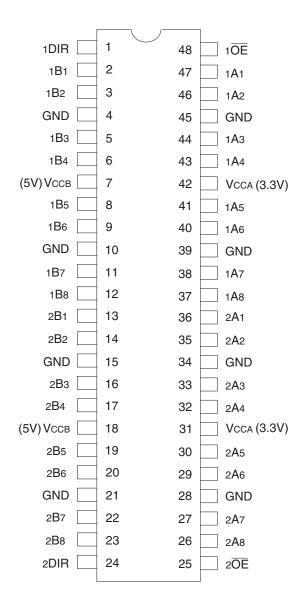

This 16-bit 3.3V to 5V level shifting transceiver is manufactured using advanced dual metal CMOS technology. The ALVC164245 contains two separate supply rails; B port has VCCB, which is set at 5V, and A port has VCCA, which is set to operate at 3.3V. This allows for translation from a 3.3V to 5V environment and vice-versa. This device is designed for asynchronous communication between data buses.


The ALVC164245 has been designed with a ± 24 mA output driver. This driver is capable of driving a moderate to heavy load while maintaining speed performance.

APPLICATIONS:

- Mixed 3.3V and 5V High Speed Systems
- 5V PCI Interface to 3.3V PC Bus Structures
- Telecommunication Legacy Systems with transitions from 5V to 3.3V

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

JUNE 2009

PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	-0.5 to +6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to +6	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-50 to +50	mA
lıĸ	Continuous Clamp Current, VI < 0 or VI > VCC	±50	mA
Іок	Continuous Clamp Current, Vo < 0	-50	mA
Icc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. Vcc terminals.
- 3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz, VCCA = 3.3V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	A Port Input Capacitance	VIN = 0V	6.5	ı	рF
CI/O	A Port I/O Capacitance	VIN = 0V	8.5	_	рF

NOTE:

1. As applicable to the device type.

CAPACITANCE (TA = +25°C, F = 1.0MHz, VCCB = 5V)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	B Port Input Capacitance	VIN = 0V	6.5	1	рF
CI/O	B Port I/O Capacitance	VIN = 0V	6.5	_	рF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description			
XOE(1) Output Enable Inputs (Active LOW)				
xDIR ⁽¹⁾ Direction Output Controls				
xAx	Port A Inputs or 3-State Outputs			
хВх	Port B Inputs or 3-State Outputs			

NOTE:

1. All control inputs are powered off Vcca.

FUNCTION TABLE (EACH 8-BIT SECTION)(1)

Inputs		
хОE	xDIR	Outputs
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

NOTE:

- 1. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (B PORT)(1)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

Symbol	Parameter	Test Cond	litions	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCB = 4.5V to 5.5V		2	_	_	V
VIL	Input LOW Voltage Level	VCCB = 4.5V to 5.5V		_	_	0.8	V
Іін	Input HIGH Current	VCCB = 5.5V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	VCCB = 5.5V	VI = GND	_	_	±5	μΑ
lozh	High Impedance Output Current	VCCB = 5.5V	Vo = Vcc	_	_	±10	μΑ
lozL	(3-State Output pins)		Vo = GND	_	_	±10	
VH	Input Hysteresis	VCCB = 4.5V	•	_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	VCCB = 5.5V VIN = GND or VCCB		_	0.1	40	μА
Δlcc	Quiescent Power Supply Current Variation	One input at 3.4V, other inputs at VCCB or GND		_	_	750	μА

NOTES:

- 1. VCCA = 2.7V to 3.6V.
- 2. Typical values are at Vcc = 5V, +25°C ambient.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE (A PORT)(1,2)

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $TA = -40^{\circ}C$ to $+85^{\circ}C$

Symbol	Parameter	Test C	conditions	Min.	Typ. ⁽³⁾	Max.	Unit
VIH	Input HIGH Voltage Level	VCCA = 2.7V to 3.6V		2	_	_	V
VIL	Input LOW Voltage Level	VCCA = 2.7V to 3.6V		_	_	0.8	V
lih	Input HIGH Current	VCCA = 3.6V	VI = VCC	_	_	±5	μA
lıL	Input LOW Current	VCCA = 3.6V	Vı = GND	_	_	±5	μA
lozн	High Impedance Output Current	VCCA = 3.6V	Vo = Vcc	_	_	±10	μA
lozL	(3-State Output pins)		Vo = GND	T -	_	±10	
VH	Input Hysteresis	VCCA = 3.3V	•	T -	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	VCCA = 3.6V VIN = GND or VCCA		_	0.1	40	μА
Δlcc	Quiescent Power Supply Current Variation	One input at VCCA - 0.6V, oth	er inputs at VCCA or GND	_	_	750	μА

NOTES:

- 1. $VCCB = 5V \pm 0.5V$.
- 2. Control inputs xDIR, $\overline{\text{OE}}$ are supplied from Vcca.
- 3. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS, Vcca = 3.3V ± 0.3V (A PORT)

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Max.	Unit
Voн	Output HIGH Voltage	VCCA = 2.7V to 3.6V	Iон = - 0.1mA	Vcca-0.2	_	V
	(B Port to A Port)	VCCA = 2.7V	Iон = - 12mA	2.2	_	
		VCCA = 3V		2.4	_	
		VCCA = 3V	Iон = - 24mA	2	_	
Vol	Output LOW Voltage	VCCA = 2.7V to 3.6V	IoL = 0.1mA	_	0.2	V
	(B Port to A Port)	VCCA = 2.7V	IoL = 12mA	_	0.4	
		VCCA = 3V	IoL = 24mA	_	0.55	

NOTE:

OUTPUT DRIVE CHARACTERISTICS, Vccb = 5V ± 0.5V (B PORT)

Symbol	Parameter	Test Con	ditions ⁽¹⁾	Min.	Max.	Unit
Voн	Output HIGH Voltage	VCCB = 4.5V	IOH = - 0.1mA	4.3	_	V
	(A Port to B Port)	VCCB = 5.5V		5.3	_	
		VCCB = 4.5V	Iон = -24mA	3.7	-	
		VCCB = 5.5V		4.7	_	
Vol	Output LOW Voltage	VCCB = 4.5V	IoL = 0.1mA	_	0.2	V
	((A Port to B Port)	VCCB = 5.5V		_	0.2	
		VCCB = 4.5V	IoL = 24mA	_	0.55	
		VCCB = 5.5V		_	0.55	

NOTE:

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = -40°C to + 85°C; Vcca = 3.3V ± 0.3V.

^{1.} VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range.

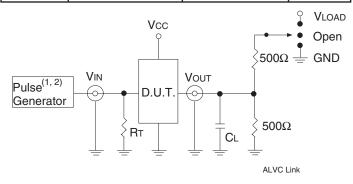
TA = - 40°C to + 85°C; VccB = 5V ± 0.5V.

OPERATING CHARACTERISTICS, TA = 25°C

			VCCA = 3.3V, VCCB = 5V	
Symbol	Parameter	Test Conditions	Typical	Unit
CPD	Power Dissipation Capacitance, Outputs enabled (A port or B port)	pation Capacitance, Outputs enabled (A port or B port) CL = 0pF, f = 10Mhz		
CPD	Power Dissipation Capacitance, Outputs disabled (A port or B port)		6	

SWITCHING CHARACTERISTICS(1)

		VCCB = 5V ± 0.5V				
		VCCA	= 2.7V	VCCA = 3.	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
tpLH	Propagation Delay	_	5.9	1	5.8	ns
t PHL	xAx to xBx					
tPLH	Propagation Delay	_	6.7	1.2	5.8	ns
tPHL	xBx to xAx					
tpzh	Output Enable Time	_	9.3	1	8.9	ns
tpzl	\overline{XOE} to xBx					
tpzh	Output Enable Time	_	10.2	2	9.1	ns
tpzl	\overline{XOE} to xAx					
tPHZ	Output Disable Time	_	9.2	2.1	9.4	ns
tPLZ	\overline{XOE} to xBx					
tPHZ	Output Disable Time	_	9	2.9	8.6	ns
tPLZ	\overline{XOE} to xAx					


NOTE:

^{1.} See TEST CIRCUITS AND WAVEFORMS. TA = -40°C to +85°C.

TEST CIRCUITS AND WAVEFORMS FOR VCCA = $3.3V \pm 0.3V$ AND VCCA = 2.7V

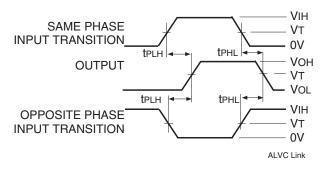
TEST CONDITIONS

Symbol	VCCA = 3.3V±0.3V	Vcca = 2.7V	Unit
VLOAD	6	6	V
ViH	3	3	V
VT	1.5	1.5	V
VLZ	300	300	mV
Voh - Vhz	300	300	mV
CL	50	50	рF

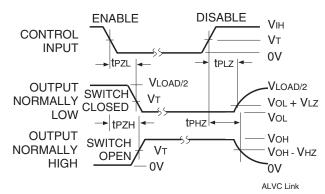
Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.


 $\mathsf{RT} = \mathsf{Termination}$ resistance: should be equal to ZOUT of the Pulse Generator.

NOTE:


1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

SWITCH POSITION

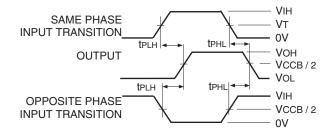
Test	Switch
Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

Propagation Delay

Enable and Disable Times

NOTE:

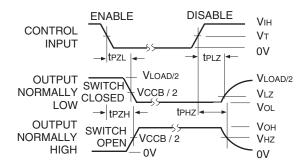
1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


TEST CIRCUITS AND WAVEFORMS FOR VCCB = $5V \pm 0.5V$

TEST CONDITIONS (USE VCCA TEST CIRCUIT)

Symbol	Vccb ⁽¹⁾ = 5V±0.2V	Unit
VLOAD	2 x Vccb	٧
ViH	2.7	V
VT	1.5 or Vccb / 2	٧
VLZ	20% of VCCB	mV
VHZ	80% of VCCB	mV
CL	50	pF

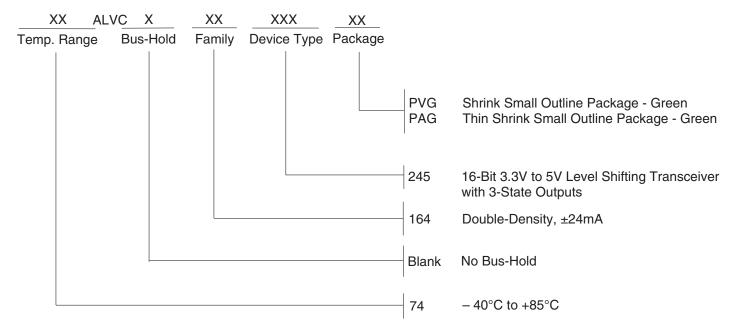
NOTE:


1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

Propagation Delay

NOTES:

- 1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.
- 2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.



Enable and Disable Times

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

ORDERING INFORMATION

