imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Octal D-type flip-flop; positive edge-trigger; 3-stateRev. 02 — 8 November 2007Product

Product data sheet

General description 1.

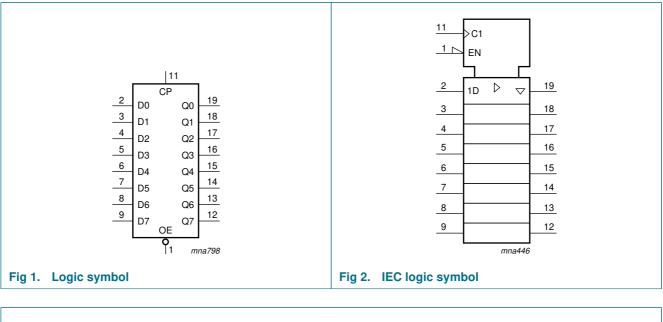
The 74ALVC574 is an octal D-type flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus-oriented applications. A clock input (CP) and an outputs enable input (\overline{OE}) are common to all flip-flops.

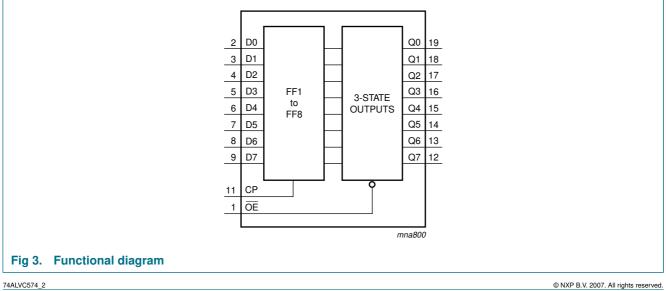
The eight flip-flops will store the state of their individual D-inputs that meet the set-up and hold times requirements on the LOW to HIGH CP transition.

When pin OE is LOW, the contents of the eight flip-flops is available at the outputs. When pin \overline{OE} is HIGH, the outputs go to the high-impedance OFF-state. Operation of the \overline{OE} input does not affect the state of the flip-flops.

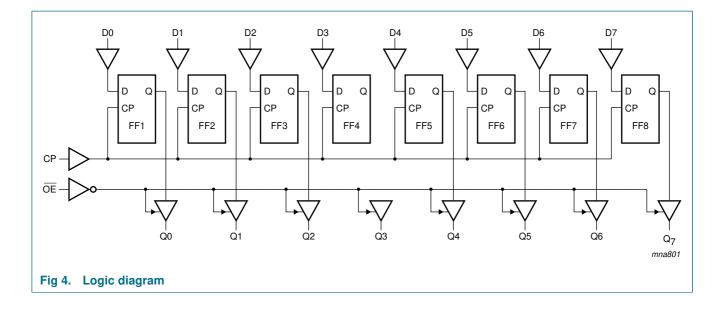
The 74ALVC574 is functionally identical to the 74ALVC374, but has a different pin arrangement.

2. **Features**

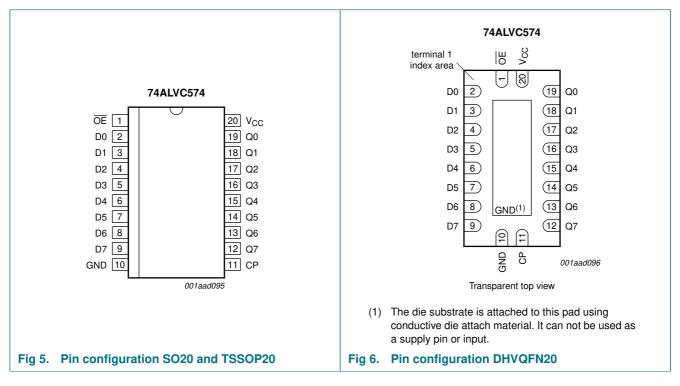

- Wide supply voltage range from 1.65 V to 3.6 V
- 3.6 V tolerant inputs/outputs
- CMOS low power consumption
- Direct interface with TTL levels (2.7 V to 3.6 V)
- Power-down mode
- Latch-up performance exceeds 250 mA
- Complies with JEDEC standards:
 - JESD8-7 (1.65 V to 1.95 V)
 - JESD8-5 (2.3 V to 2.7 V)
 - JESD8B/JESD36 (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E exceeds 2000 V
 - MM JESD22-A115A exceeds 200 V



Ordering information 3.


Table 1. Orde	ering information	Table 1. Ordering information								
Type number	Package									
	Temperature range	Name	Description	Version						
74ALVC574D	–40 °C to +85 °C	SO20	plastic small outline package; 20 leads; body width 7.5 mm	SOT163-1						
74ALVC574PW	–40 °C to +85 °C	TSSOP20	plastic thin shrink small outline package; 20 leads; body width 4.4 mm	SOT360-1						
74ALVC574BQ	–40 °C to +85 °C	DHVQFN20	plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body $2.5 \times 4.5 \times 0.85$ mm	SOT764-1						

Functional diagram 4.


Octal D-type flip-flop; positive edge-trigger; 3-state

Octal D-type flip-flop; positive edge-trigger; 3-state

5. Pinning information

5.1 Pinning

5.2 Pin description

Table 2.	Pin description	
Symbol	Pin	Description
D[0:7]	2, 3, 4, 5, 6, 7, 8, 9	data input
CP	11	clock input (LOW to HIGH, edge-triggered)
ŌĒ	1	output enable input (active LOW)
Q[0:7]	19, 18, 17, 16, 15, 14, 13, 12	3-state flip-flop output
V _{CC}	20	supply voltage
GND	10	ground (0 V)

6. Functional description

Table 3.Function table^[1]

Operating mode	Input		Internal flip-flop	Output	
	OE	СР	Dn		Qn
Load and read register	L	Î↑	I	L	L
	L	Ŷ	h	Н	Н
Load register and disable	Н	\uparrow	I	L	Z
outputs	Н	Ŷ	h	Н	Z

[1] H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the LOW to HIGH CP transition

L = LOW voltage level

I = LOW voltage level one set-up time prior to the LOW to HIGH CP transition

Z = high-impedance OFF-state

 \uparrow = LOW to HIGH clock transition

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC}	supply voltage			-0.5	+4.6	V
I _{IK}	input clamping current	V ₁ < 0 V		-50	-	mA
VI	input voltage			-0.5	+4.6	V
I _{OK}	output clamping current	$V_{\rm O}$ > $V_{\rm CC}$ or $V_{\rm O}$ < 0 V		-	±50	mA
Vo	output voltage	output HIGH or LOW state	[1] [2]	-0.5	$V_{CC} + 0.5$	V
		output 3-state		-0.5	+4.6	V
		power-down mode, $V_{CC} = 0 V$	[2]	-0.5	+4.6	V
lo	output current	$V_{O} = 0 V$ to V_{CC}		-	±50	mA
I _{CC}	supply current			-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +85 \ ^{\circ}C$	[3]	-	500	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] When $V_{CC} = 0 V$ (power-down mode), the output voltage can be 3.6 V in normal operation.

[3] For SO20 packages: above 70 °C derate linearly with 8 mW/K.
 For TSSOP20 packages: above 60 °C derate linearly with 5.5 mW/K.
 For DHVQFN20 packages: above 60 °C derate linearly with 4.5 mW/K.

Octal D-type flip-flop; positive edge-trigger; 3-state

8. Recommended operating conditions

Table 5.	Recommended operating condit	ions			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		1.65	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	output HIGH or LOW state	0	V _{CC}	V
		output 3-state	0	3.6	V
		power-down mode; $V_{CC} = 0 V$	0	3.6	V
T _{amb}	ambient temperature	in free air	-40	+85	°C
$\Delta t / \Delta V$	input transition rise and fall rate	V_{CC} = 1.65 V to 2.7 V	0	20	ns/V
		V _{CC} = 2.7 V to 3.6 V	0	10	ns/V

9. Static characteristics

Table 6. Static characteristics

At recommended operating conditions. Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40	°C to +8	5 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	
VIH	HIGH-level input voltage	V _{CC} = 1.65 V to 1.95 V	$0.65 imes V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.7	-	-	٧
		$V_{CC} = 2.7 V \text{ to } 3.6 V$	2.0	-	-	٧
V _{IL}	LOW-level input voltage	$V_{CC} = 1.65 \text{ V}$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V_{CC} = 2.7 V to 3.6 V	-	-	0.8	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH} \text{ or } V_{IL}$				
		I_O = $-100~\mu\text{A};$ V_{CC} = 1.65 V to 3.6 V	$V_{CC}-0.2$	-	-	V
		$I_{O} = -6 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.25	1.51	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.8	2.10	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.7	2.01	-	V
		$I_{O} = -12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	2.2	2.53	-	V
		$I_{O} = -18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.4	2.76	-	V
		$I_{O} = -24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.2	2.68	-	V
V _{OL}	LOW-level output voltage	$V_{I} = V_{IH} \text{ or } V_{IL}$				
		I_O = 100 $\mu A;V_{CC}$ = 1.65 V to 3.6 V	-	-	0.2	V
		$I_{O} = 6 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	0.11	0.3	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	0.17	0.4	V
		$I_{O} = 18 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	0.25	0.6	V
		$I_{O} = 12 \text{ mA}; V_{CC} = 2.7 \text{ V}$	-	0.16	0.4	V
		$I_{O} = 18 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.23	0.4	V
		$I_{O} = 24 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	0.30	0.55	V
l _l	input leakage current	$V_{CC} = 3.6 \text{ V}; \text{ V}_{I} = 3.6 \text{ V} \text{ or GND}$	-	±0.1	±5	μA

Octal D-type flip-flop; positive edge-trigger; 3-state

Symbol	Parameter	Conditions	-4	0 °C to +85	°C	Unit
			Min	Typ[1]	Max	
I _{OZ}	OFF-state output current	$\label{eq:VI} \begin{array}{l} V_{I} = V_{IH} \text{ or } V_{IL}; \ V_{CC} = 1.65 \ V \ \text{to} \ 3.6 \ V; \\ V_{O} = 3.6 \ V \ \text{or } \ GND; \end{array}$	-	±0.1	±10	μA
I _{OFF}	power-off leakage current	$V_{CC} = 0 \text{ V}; \text{ V}_{1} \text{ or } \text{ V}_{O} = 0 \text{ V to } 3.6 \text{ V}$	-	±0.1	±10	μA
I _{CC}	supply current	$\label{eq:V_CC} \begin{array}{l} V_{CC} = 3.6 \ V; \ V_I = V_{CC} \ \text{or GND}; \\ I_O = 0 \ A \end{array}$	-	0.2	10	μA
ΔI_{CC}	additional supply current	per input pin; V _{CC} = 3.0 V to 3.6 V; V _I = V _{CC} - 0.6 V; I _O = 0 A	-	5	750	μA
CI	input capacitance		-	3.5	-	pF

Table 6. Static characteristics ... continued

[1] All typical values are measured at V_{CC} = 3.3 V (unless stated otherwise) and T_{amb} = 25 °C.

10. Dynamic characteristics

Dynamic characteristics Table 7.

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 10.

Symbol	Parameter	Parameter Conditions		-40) °C to +85	5 °C	Unit
						Max	
t _{pd}	propagation delay	CP to Qn; see Figure 7	[2]				
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		1.0	3.1	6.4	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.0	2.3	3.9	ns
		$V_{CC} = 2.7 V$		1.0	2.5	3.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.0	2.5	3.6	ns
t _{en}	enable time	OE to Qn; see Figure 8	[2]				
		V _{CC} = 1.65 V to 1.95 V		1.0	3.2	6.4	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.0	2.6	4.5	ns
		$V_{CC} = 2.7 V$		1.0	3.2	4.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.0	2.4	4.0	ns
dis	disable time	OE to Qn; see Figure 8	[2]				
		V _{CC} = 1.65 V to 1.95 V		1.5	3.6	7.0	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$		1.0	2.3	4.4	ns
		$V_{CC} = 2.7 V$		1.5	2.9	4.4	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.0	2.8	4.4	ns
tw	pulse width	clock HIGH or LOW; see Figure 7					
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		3.8	1.1	-	ns
		V_{CC} = 2.3 V to 2.7 V		3.3	0.9	-	ns
		$V_{CC} = 2.7 V$		3.3	0.8	-	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		3.3	1.2	-	ns

Octal D-type flip-flop; positive edge-trigger; 3-state

Symbol	Parameter	Conditions	-40	0 °C to +85	5 °C	Unit
			Min	Typ <mark>[1]</mark>	Max	
t _{su}	set-up time	Dn to CP; see Figure 9				
		V _{CC} = 1.65 V to 1.95 V	0.8	-0.1	-	ns
	V _{CC} = 2.3 V to 2.7 V	0.8	0.1	-	ns	
		$V_{CC} = 2.7 V$	0.8	0.3	-	ns
		V _{CC} = 3.0 V to 3.6 V	0.8	0.0	-	ns
t _h	hold time	Dn to CP; see Figure 9				
		V _{CC} = 1.65 V to 1.95 V	0.8	-0.1	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	0.8	0.1	-	ns
		V _{CC} = 2.7 V	0.8	0.4	-	ns
		V _{CC} = 3.0 V to 3.6 V	0.7	-0.1	-	ns
f _{max}	maximum frequency	see Figure 7				
		V _{CC} = 2.3 V to 2.7 V	100	200	-	MHz
		V _{CC} = 2.7 V	100	200	-	MHz
		V _{CC} = 3.0 V to 3.6 V	150	300	-	MHz
C _{PD}	power dissipation	per flip-flop; $V_I = GND$ to V_{CC} ; $V_{CC} = 3.3$ V [3]				
	capacitance	outputs HIGH or LOW state	-	21	-	pF
		outputs 3-state	-	13	-	pF

Table 7. Dynamic characteristics ... continued

Voltages are referenced to GND (ground = 0 V). For test circuit see Figure 10.

[1] Typical values are measured at $T_{amb} = 25 \ ^{\circ}C$

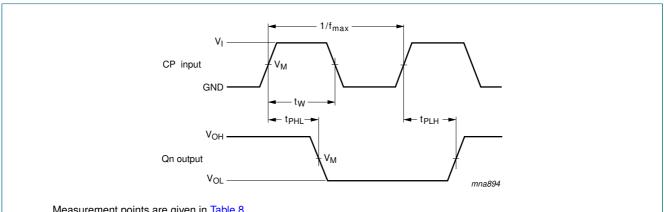
t_{pd} is the same as t_{PHL} and t_{PLH}.
 t_{en} is the same as t_{PZH} and t_{PZL}.
 t_{dis} is the same as t_{PHZ} and t_{PLZ}.

[3] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 f_i = input frequency in MHz; f_o = output frequency in MHz

 C_L = output load capacitance in pF

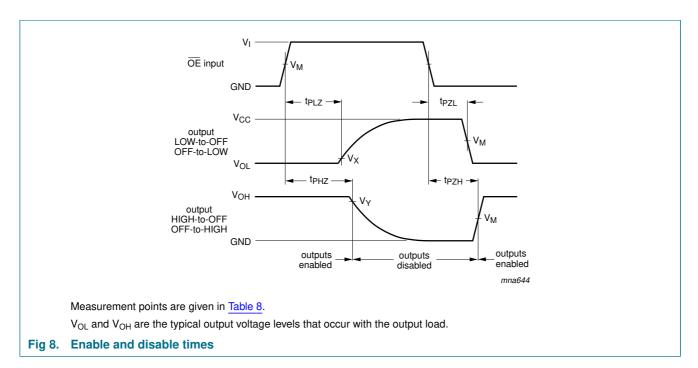

 V_{CC} = supply voltage in Volts

N = number of inputs switching

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs

Octal D-type flip-flop; positive edge-trigger; 3-state

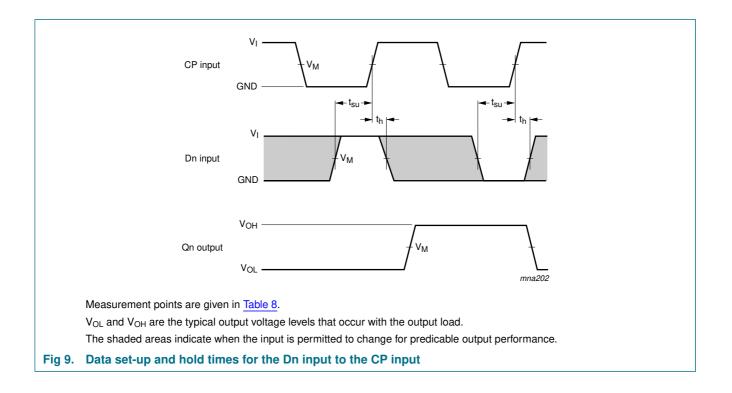
11. Waveforms


Measurement points are given in Table 8.

 V_{OL} and V_{OH} are the typical output voltage levels that occur with the output load.

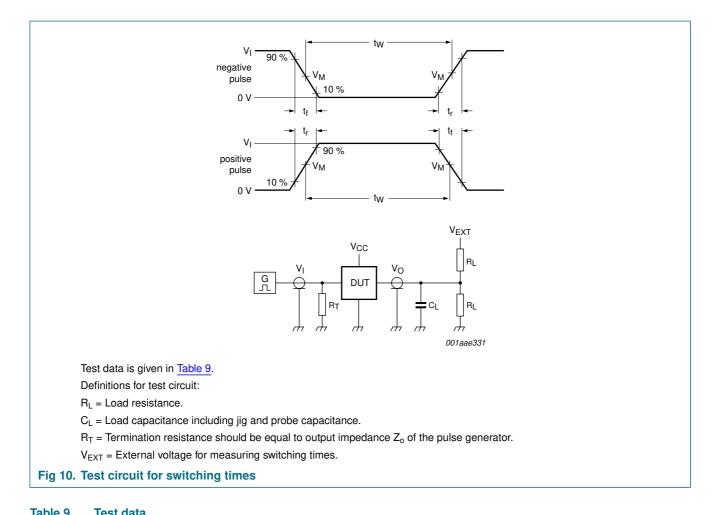
Fig 7. Clock (CP) to output (Qn) propagation delays, the clock pulse width, and the maximum frequency

Table 8. **Measurement points**


Supply voltage	Innut	Output		
Supply voltage	Input	Output		
V _{cc}	V _M	V _M	V _X	V _Y
1.65 V to 1.95 V	$0.5V_{CC}$	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
2.3 V to 2.7 V	$0.5V_{CC}$	0.5V _{CC}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
2.7 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V
3.0 V to 3.6 V	1.5 V	1.5 V	V _{OL} + 0.3 V	V _{OH} – 0.3 V

NXP Semiconductors

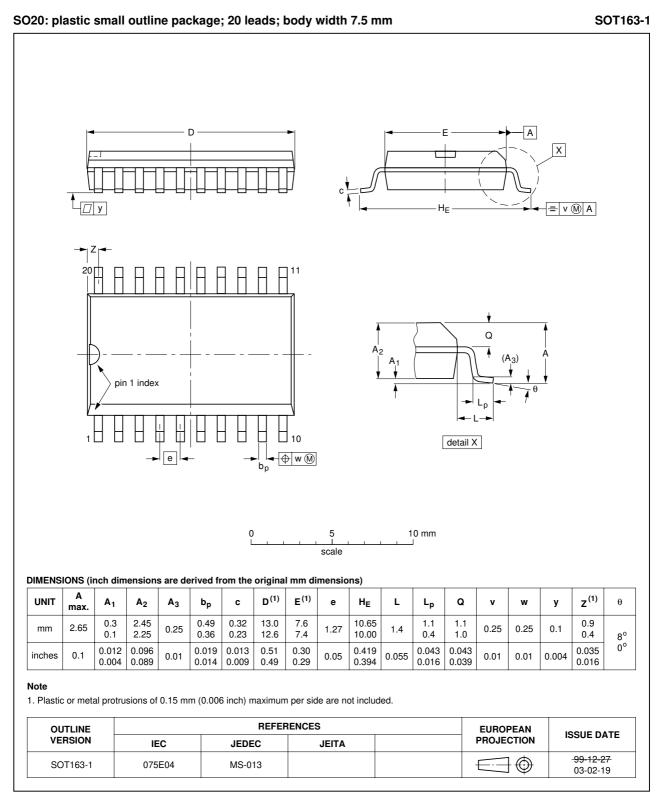
74ALVC574


Octal D-type flip-flop; positive edge-trigger; 3-state

NXP Semiconductors

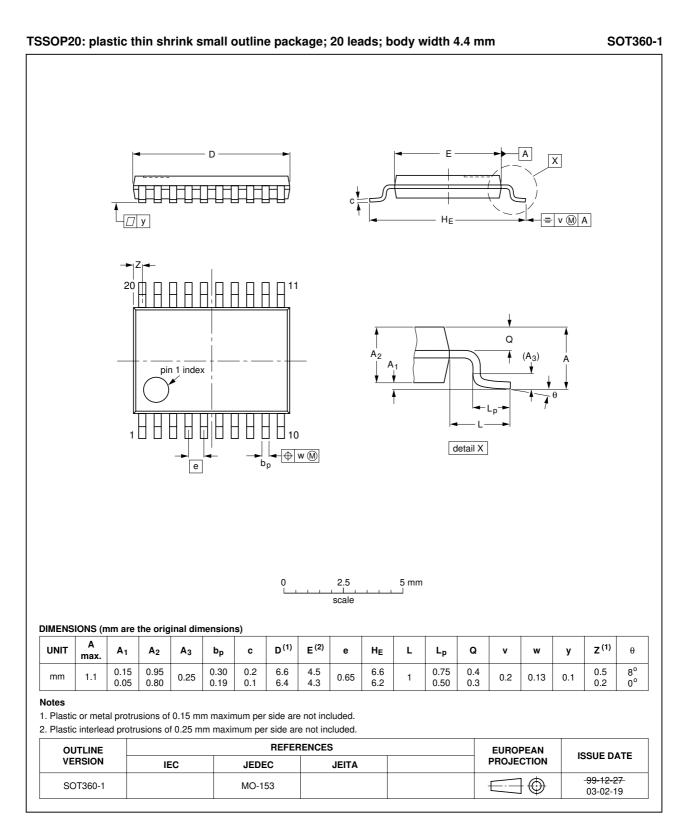
74ALVC574

Octal D-type flip-flop; positive edge-trigger; 3-state

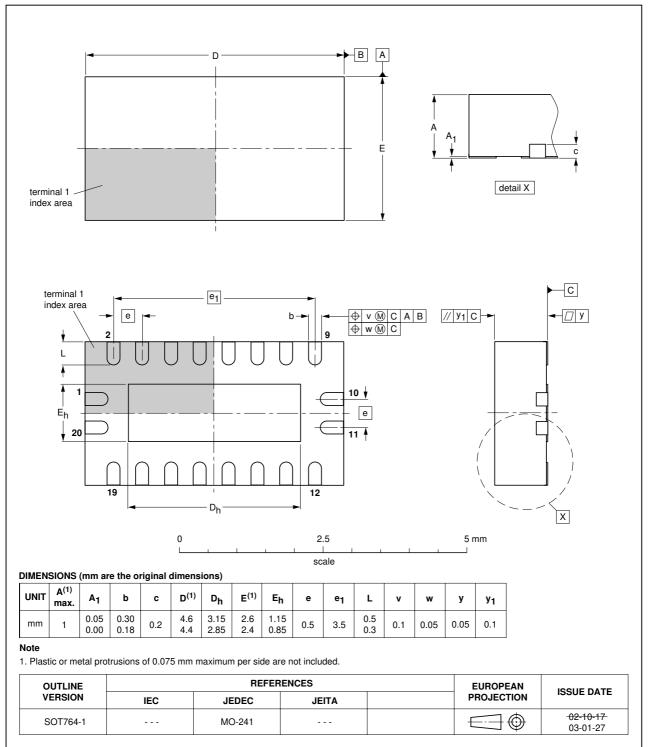

Supply voltage	Input	Input		Load		V _{EXT}		
	Vi	t _r , t _f	CL	RL	t _{PLH} , t _{PHL}	t _{PLZ} , t _{PZL}	t _{PHZ} , t _{PZH}	
1.65 V to 1.95 V	V _{CC}	≤ 2.0 ns	30 pF	1 kΩ	open	2V _{CC}	GND	
2.3 V to 2.7 V	V _{CC}	\leq 2.0 ns	30 pF	500 Ω	open	2V _{CC}	GND	
2.7 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	6 V	GND	
3.0 V to 3.6 V	2.7 V	≤ 2.5 ns	50 pF	500 Ω	open	6 V	GND	

NXP Semiconductors

74ALVC574


Octal D-type flip-flop; positive edge-trigger; 3-state

12. Package outline


Fig 11. Package outline SOT163-1 (SO20)

Octal D-type flip-flop; positive edge-trigger; 3-state

Fig 12. Package outline SOT360-1 (TSSOP20)

Octal D-type flip-flop; positive edge-trigger; 3-state

DHVQFN20: plastic dual in-line compatible thermal enhanced very thin quad flat package; no leads; 20 terminals; body 2.5 x 4.5 x 0.85 mm SOT764-1

Fig 13. Package outline SOT764-1 (DHVQFN20)

13. Abbreviations

Table 10.	Abbreviations
Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model
TTL	Transistor-Transistor Logic

14. Revision history

Table 11.Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes	
74ALVC574_2	20071108	Product data sheet	-	74ALVC574_1	
Modifications:	 The format of this data sheet has been redesigned to comply with the new identity guidelines of NXP Semiconductors. 				
	 Legal texts have been adapted to the new company name where appropriate. 				
	<u>Section 3</u> : DHVQFN20 package added.				
	 <u>Section 8</u>: derating values added for DHVQFN20 package. 				
	 <u>Section 12</u>: outline drawing added for DHVQFN20 package. 				
74ALVC574_1	20020304	Product specification	-	-	

15. Legal information

15.1 Data sheet status

Document status[1][2]	Product status ^[3]	Definition
Objective [short] data sheet	Development	This document contains data from the objective specification for product development.
Preliminary [short] data sheet	Qualification	This document contains data from the preliminary specification.
Product [short] data sheet	Production	This document contains the product specification.

[1] Please consult the most recently issued document before initiating or completing a design.

[2] The term 'short data sheet' is explained in section "Definitions".

[3] The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status information is available on the Internet at URL http://www.nxp.com.

15.2 Definitions

Draft — The document is a draft version only. The content is still under internal review and subject to formal approval, which may result in modifications or additions. NXP Semiconductors does not give any representations or warranties as to the accuracy or completeness of information included herein and shall have no liability for the consequences of use of such information.

Short data sheet — A short data sheet is an extract from a full data sheet with the same product type number(s) and title. A short data sheet is intended for quick reference only and should not be relied upon to contain detailed and full information. For detailed and full information see the relevant full data sheet, which is available on request via the local NXP Semiconductors sales office. In case of any inconsistency or conflict with the short data sheet, the full data sheet shall prevail.

15.3 Disclaimers

General — Information in this document is believed to be accurate and reliable. However, NXP Semiconductors does not give any representations or warranties, expressed or implied, as to the accuracy or completeness of such information and shall have no liability for the consequences of use of such information.

Right to make changes — NXP Semiconductors reserves the right to make changes to information published in this document, including without limitation specifications and product descriptions, at any time and without notice. This document supersedes and replaces all information supplied prior to the publication hereof.

Suitability for use — NXP Semiconductors products are not designed, authorized or warranted to be suitable for use in medical, military, aircraft, space or life support equipment, nor in applications where failure or

malfunction of an NXP Semiconductors product can reasonably be expected to result in personal injury, death or severe property or environmental damage. NXP Semiconductors accepts no liability for inclusion and/or use of NXP Semiconductors products in such equipment or applications and therefore such inclusion and/or use is at the customer's own risk.

Applications — Applications that are described herein for any of these products are for illustrative purposes only. NXP Semiconductors makes no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Limiting values — Stress above one or more limiting values (as defined in the Absolute Maximum Ratings System of IEC 60134) may cause permanent damage to the device. Limiting values are stress ratings only and operation of the device at these or any other conditions above those given in the Characteristics sections of this document is not implied. Exposure to limiting values for extended periods may affect device reliability.

Terms and conditions of sale — NXP Semiconductors products are sold subject to the general terms and conditions of commercial sale, as published at http://www.nxp.com/profile/terms, including those pertaining to warranty, intellectual property rights infringement and limitation of liability, unless explicitly otherwise agreed to in writing by NXP Semiconductors. In case of any inconsistency or conflict between information in this document and such terms and conditions, the latter will prevail.

No offer to sell or license — Nothing in this document may be interpreted or construed as an offer to sell products that is open for acceptance or the grant, conveyance or implication of any license under any copyrights, patents or other industrial or intellectual property rights.

15.4 Trademarks

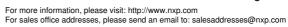
Notice: All referenced brands, product names, service names and trademarks are the property of their respective owners.

16. Contact information

For additional information, please visit: <u>http://www.nxp.com</u>

For sales office addresses, send an email to: salesaddresses@nxp.com

Octal D-type flip-flop; positive edge-trigger; 3-state


17. Contents

1	General description 1
2	Features 1
3	Ordering information 2
4	Functional diagram 2
5	Pinning information 4
5.1	Pinning 4
5.2	Pin description 4
6	Functional description 5
7	Limiting values 5
8	Recommended operating conditions 6
9	Static characteristics 6
10	Dynamic characteristics 7
11	Waveforms 9
12	Package outline 12
13	Abbreviations 15
14	Revision history 15
15	Legal information 16
15.1	Data sheet status 16
15.2	Definitions 16
15.3	Disclaimers
15.4	Trademarks 16
16	Contact information 16
17	Contents 17

Please be aware that important notices concerning this document and the product(s) described herein, have been included in section 'Legal information'.

© NXP B.V. 2007.

All rights reserved.

Date of release: 8 November 2007 Document identifier: 74ALVC574_2

