imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

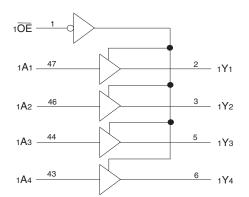
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

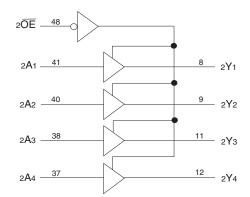
3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS AND BUS-HOLD

IDT74ALVCH162244

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(o) (Output Skew) < 250ps
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 3.3V ± 0.3V, Normal Range
- Vcc = 2.7V to 3.6V, Extended Range
- Vcc = $2.5V \pm 0.2V$
- CMOS power levels (0.4µ W typ. static)
- · Rail-to-Rail output swing for increased noise margin
- Available in TSSOP package

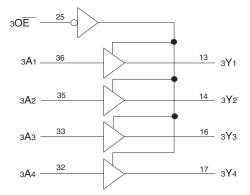

DRIVE FEATURES:

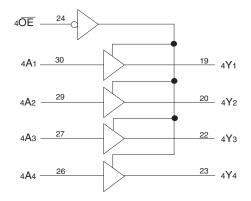

- Balanced Output Drivers: ±12mA
- · Low switching noise

APPLICATIONS:

- 3.3V high speed systems
- 3.3V and lower voltage computing systems

FUNCTIONAL BLOCK DIAGRAM

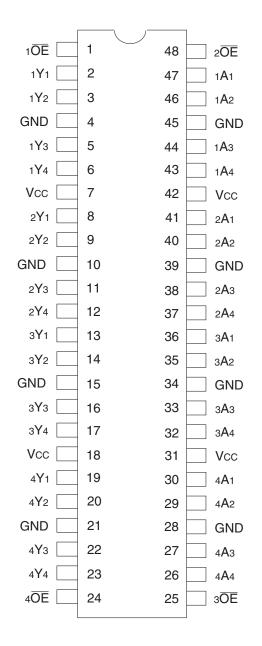

IDT and the IDT logo are registered trademarks of Integrated Device Technology, Inc.


DESCRIPTION:

This 16-bit buffer/driver is built using advanced dual metal CMOS technology. The ALVCH162244 is designed specifically to improve the performance and density of 3-state memory address drivers, clock drivers, and bus-oriented receivers and transmitters. The device can be used as four 4-bit buffers, two 8-bit buffers, or one 16-bit buffer. It provides true outputs and symmetrical active-low output-enable (\overline{OE}) inputs.

The ALVCH162244 has series resistors in the device output structure which will significantly reduce line noise when used with light loads. This driver has been designed to drive ± 12 mA at the designated threshold levels.

The ALVCH162244 has "bus-hold" which retains the inputs' last state whenever the input bus goes to a high impedance. This prevents floating inputs and eliminates the need for pull-up/down resistors.



SEPTEMBER 2016

IDT74ALVCH162244 3.3V CMOS 16-BIT BUFFER/DRIVER WITH 3-STATE OUTPUTS

PIN CONFIGURATION

TSSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +4.6	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	–65 to +150	°C
Ιουτ	DC Output Current	–50 to +50	mA
Ік	Continuous Clamp Current, VI < 0 or VI > Vcc	±50	mA
Іок	Continuous Clamp Current, Vo < 0	50	mA
lcc Iss	Continuous Current through each Vcc or GND	±100	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. Vcc terminals.

3. All terminals except Vcc.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	5	7	рF
Соит	Output Capacitance	Vout = 0V	7	9	рF
CI/O	I/O Port Capacitance	VIN = 0V	7	9	pF

NOTE:

1. As applicable to the device type.

PIN DESCRIPTION

Pin Names	Description		
xŌĒ	3-State Output Enable Inputs (Active LOW)		
xAx	Data Inputs ⁽¹⁾		
xYx	3-State Outputs		

NOTE:

1. These pins have "Bus-Hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE (EACH 4-BIT BUFFER)⁽¹⁾

Inp	Outputs	
xOE	хАх	хҮх
L	Н	Н
L	L	L
Н	Х	Z

NOTE:

1. H = HIGH Voltage Level

X = Don't Care

L = LOW Voltage Level

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Operating Condition: TA = -40 °C to +85 °C

Symbol	Parameter	Test Co	nditions	Min.	Typ. ⁽¹⁾	Max.	Unit
Vih	Input HIGH Voltage Level	Vcc = 2.3V to 2.7V		1.7	_	_	V
		Vcc = 2.7V to 3.6V		2	_	_	
VIL	Input LOW Voltage Level	Vcc = 2.3V to 2.7V			_	0.7	V
		Vcc = 2.7V to 3.6V		—	—	0.8	
Іін	Input HIGH Current	Vcc = 3.6V	VI = VCC	_	—	±5	μA
lıL	Input LOW Current	Vcc = 3.6V	VI = GND	_	-	±5	μA
lozн	High Impedance Output Current	Vcc = 3.6V	Vo = Vcc	_	_	±10	μA
Iozl	(3-State Output pins)		Vo = GND		_	±10	
Vik	Clamp Diode Voltage	Vcc = 2.3V, IIN = -18mA		_	-0.7	-1.2	V
Vн	Input Hysteresis	Vcc = 3.3V			100	_	mV
ІССL ІССН ІССZ	Quiescent Power Supply Current	Vcc = 3.6V Vin = GND or Vcc		-	0.1	40	μA
Alcc	Quiescent Power Supply Current Variation	One input at Vcc - 0.6V, other	nputs at Vcc or GND	-	-	750	μA

NOTE:

1. Typical values are at Vcc = 3.3V, +25°C ambient.

BUS-HOLD CHARACTERISTICS

Symbol	Parameter ⁽¹⁾	Test Conditions		Min.	Typ. ⁽²⁾	Max.	Unit
Івнн	Bus-Hold Input Sustain Current	Vcc = 3V	VI = 2V	-75	—	—	μA
IBHL			VI = 0.8V	75	—	_	
Івнн	Bus-Hold Input Sustain Current	Vcc = 2.3V	VI = 1.7V	-45	—	—	μA
IBHL			VI = 0.7V	45	—	_	
Івнно	Bus-Hold Input Overdrive Current	Vcc = 3.6V	VI = 0 to 3.6V	—	_	±500	μA
Ibhlo							

NOTES:

1. Pins with Bus-Hold are identified in the pin description.

2. Typical values are at Vcc = 3.3V, +25°C ambient.

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	TestC	Conditions ⁽¹⁾	Min.	Max.	Unit
Vон	Output HIGH Voltage	Vcc = 2.3V to 3.6V	Іон = - 0.1mA	Vcc-0.2	_	V
		Vcc = 2.3V	Іон = – 4mA	1.9	_]
			Iон = - 6mA	1.7	_	
		Vcc = 2.7V	Iон = - 4mA	2.2	_	
			Iон = - 8mA	2	_	
		Vcc = 3V	Iон = - 6mA	2.4	_	
			Іон = – 12mA	2	_	
Vol	Output LOW Voltage	Vcc = 2.3V to 3.6V	IoL = 0.1mA	—	0.2	V
		Vcc = 2.3V	IOL = 4mA	—	0.4	
			IoL = 6mA	_	0.55	
		Vcc = 2.7V	IOL = 4mA	_	0.4]
			IOL = 8mA	-	0.6	
		Vcc = 3V	IOL = 6mA		0.55]
			IOL = 12mA	—	0.8	
	1			1	1	1

NOTE:

1. VIH and VIL must be within the min. or max. range shown in the DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE table for the appropriate Vcc range. TA = − 40°C to + 85°C.

OPERATING CHARACTERISTICS, TA = 25 °C

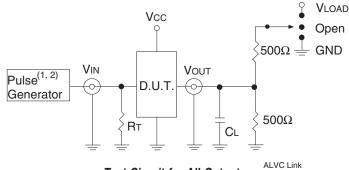
			$Vcc = 2.5V \pm 0.2V$	$Vcc = 3.3V \pm 0.3V$	
Symbol	Parameter	Test Conditions	Typical	Typical	Unit
Cpd	Power Dissipation Capacitance Outputs enabled	CL = 0pF, f = 10Mhz	16	19	рF
Cpd	Power Dissipation Capacitance Outputs disabled		4	5	

SWITCHING CHARACTERISTICS⁽¹⁾

		Vcc = 2.5	5V ± 0.2V	Vcc =	= 2.7V	Vcc = 3.3	V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Min.	Max.	Unit
tPLH	Propagation Delay	1	4.9	—	4.7	1	4.2	ns
tPHL	xAx to xYx							
tРZH	Output Enable Time	1	6.8	—	6.7	1	5.6	ns
tPZL	x OE to xYx							
tPHZ	Output Disable Time	1	6.3	—	5.7	1	5.5	ns
tPLZ	x OE to xYx							
tsk(o)	Output Skew ⁽²⁾	—	—	—	—	—	500	ps

NOTES:

1. See TEST CIRCUITS AND WAVEFORMS. TA = - 40°C to + 85°C.


2. Skew between any two outputs of the same package and switching in the same direction.

IDT74ALVCH162244 3.3V CMOS 16-BIT BUFFER/DRIVER WITH3-STATE OUTPUTS

INDUSTRIAL TEMPERATURE RANGE

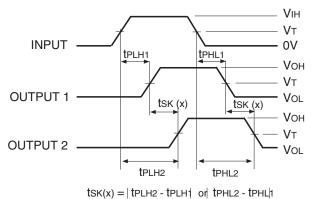
TEST CIRCUITS AND WAVEFORMS TEST CONDITIONS

Symbol	$Vcc^{(1)}=3.3V\pm0.3V$	Vcc ⁽¹⁾ =2.7V	Vcc ⁽²⁾ =2.5V±0.2V	Unit
VLOAD	6	6	2 x Vcc	V
Vih	2.7	2.7	Vcc	V
Vτ	1.5	1.5	Vcc/2	V
Vlz	300	300	150	mV
VHZ	300	300	150	mV
CL	50	50	30	pF

Test Circuit for All Outputs

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

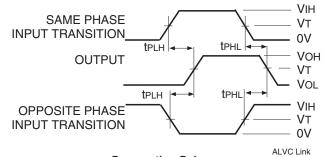

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

NOTES:

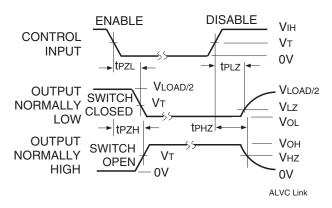
1. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns. 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2ns; tR \leq 2ns.

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	VLOAD
Disable High Enable High	GND
All Other Tests	Open

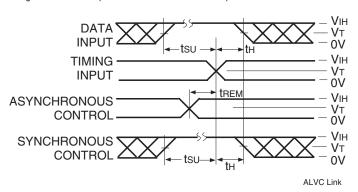

ALVC Link

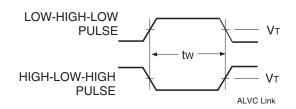
Output Skew - tsk(x)


NOTES:

1. For tsk(o) OUTPUT1 and OUTPUT2 are any two outputs.

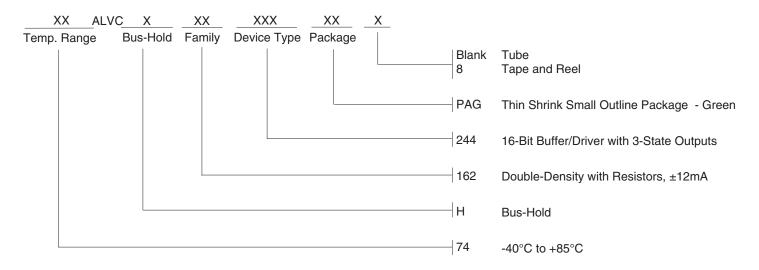
2. For tsk(b) OUTPUT1 and OUTPUT2 are in the same bank.





Enable and Disable Times

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.


Set-up, Hold, and Release Times

Pulse Width

NOTE:

ORDERINGINFORMATION

Datasheet Document History

09/19/2016 Pgs. 1,2, and 6 Updated the ordering information by removing SSOP package and adding Tape and Reel.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com