

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

74ALVCH16823

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

Product specification

1998 Jul 29

IC24 Data Handbook

18-bit D-type flip-flop (3-State)

74ALVCH16823

FEATURES

- Wide supply voltage range of 1.2V to 3.6V
- Complies with JEDEC standard no. 8-1A.
- CMOS low power consumption
- Direct interface with TTL levels
- Current drive ± 24 mA at 3.0 V
- Multibyte™flow-through standard pin-out architecture
- Low inductance multiple V_{CC} and GND pins to minimize noise and ground bounce
- All data inputs have bus hold
- Output drive capability 50Ω transmission lines @ 85°C

DESCRIPTION

The 74ALVCH16823 is a 18-bit edge-triggered flip-flop featuring separate D-type inputs for each flip-flop and 3-state outputs for bus oriented applications. Incorporates bushold data inputs which eliminate the need for external pull-up resistors to hold unused inputs. The74ALVCH16823 consists of two sections of nine edge-triggered flip-flops. A clock (CP) input, an output-enable (OE) input, a Master reset (MR) input and a clock-enable(CE) input are provided for each total 9-bit section.

With the clock-enable ($\overline{\text{CE}}$) input LOW, the D-type flip-flops will store the state of their individual D-inputs that meet the set-up and hold time requirements on the LOW-to-HIGH CP transition. Taking CE HIGH disables the clock buffer, thus latching the outputs. Taking the Master reset (MR) input LOW causes all the Q outputs to go LOW independently of the clock.

When \overline{OE} is LOW, the contents of the flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance OFF-state. Operation of the OE input does not affect the state of flip-flops.

Active bus hold circuitry is provided to hold unused or floating data inputs at a valid logic level.

QUICK REFERENCE DATA

GND = 0V; $T_{amb} = 25^{\circ}C$; $t_r = t_f \le 2.5 \text{ ns}$

SYMBOL	PARAMETER	CONDITIO	NS	TYPICAL	UNIT	
t _{PHL} /t _{PLH}	Propagation delay CP to Qn	V _{CC} = 2.5V, CL = 30pF V _{CC} = 3.3V, CL = 50pF	2.1 2.1	ns		
F _{max}	Maximum clock frequency	V _{CC} = 2.5V, CL = 30pF V _{CC} = 3.3V, CL = 50pF	300 350	MHz		
C _I	Input capacitance			5.0	pF	
	Dawer discipation conscitance per letch	$V_{L} = GND \text{ to } V_{CC}^{-1}$	Outputs enabled	16	pF	
C _{PD}	Power dissipation capacitance per latch	AL = GIAD to ACC.	Outputs disabled	10	l pr	

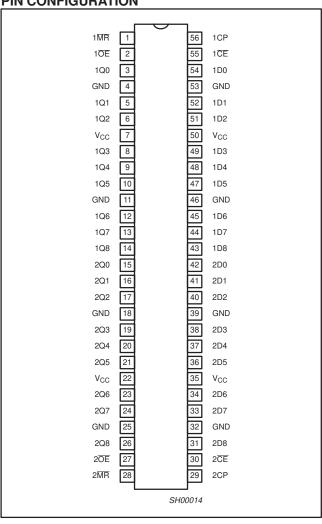
NOTES:

P_D = C_{PD} × V_{CC}² × f_i + Σ (C_L × V_{CC}² × f_o) where: f_i = input frequency in MHz; C_L = output load capacity in pF; f_o = output frequency in MHz; V_{CC} = supply voltage in V; Σ (C_L × V_{CC}² × f_o) = sum of outputs.

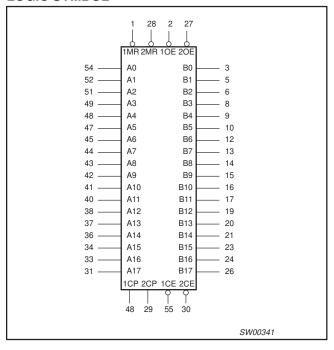
ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER	
56-Pin Plastic SSOP Type II	-40°C to +85°C	74ALVCH16823 DL	ACH16823 DL	SOT371-1	
56-Pin Plastic TSSOP Type II	-40°C to +85°C	74ALVCH16823 DGG	ACH16823 DGG	SOT364-1	

 C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

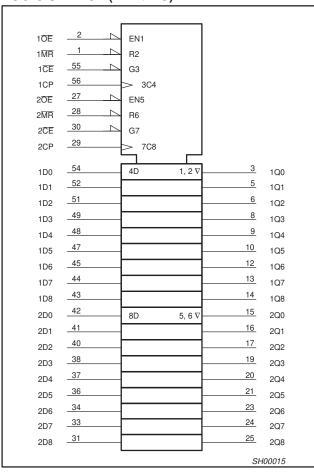

18-bit D-type flip-flop (3-State)

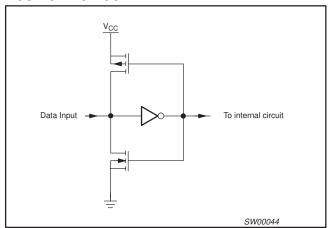
74ALVCH16823


PIN DESCRIPTION

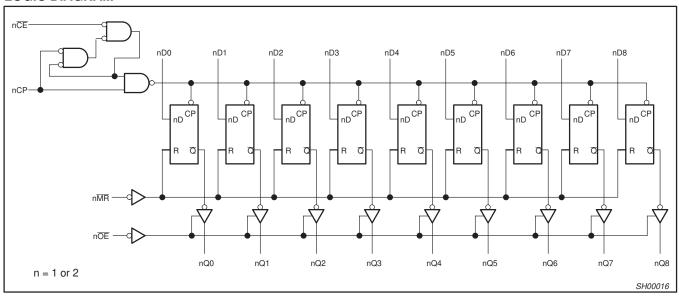
PIN NUMBER	SYMBOL	FUNCTION
2, 27	1 <u>OE</u> , 2 <u>OE</u>	Output enable input (active-Low)
54, 52, 51, 49, 48, 47, 45, 44, 43 42, 41, 40, 38, 37, 36, 34, 33, 31	1D0-1D8 2D0-2D8	Data inputs
3, 5, 6, 8, 9, 10, 12, 13, 14 15, 16, 17, 19, 20, 21, 23, 24, 26	1Q0-1Q8 2Q0-2Q8	Data outputs
56, 29	1CP, 2CP	Clock pulse input (active rising edge)
55, 30	1CE, 2CE	Clock enable input (active-Low)
1, 28	1MR, 2MR	Master reset input (active-Low)
4, 11, 18, 25, 32, 39, 46, 53	GND	Ground (0V)
7, 22, 35, 50	V _{CC}	Positive supply voltage

PIN CONFIGURATION


LOGIC SYMBOL


18-bit D-type flip-flop (3-State)

74ALVCH16823


LOGIC SYMBOL (IEEE/IEC)

BUS HOLD CIRCUIT

LOGIC DIAGRAM

18-bit D-type flip-flop (3-State)

74ALVCH16823

FUNCTION TABLE

		INPUTS			OUTPUT	OPERATING MODES
nŌĒ	nMR	nCE	nCP	nDx	nQx	OPERATING MODES
L	L	Х	Х	Х	L	Clear
L	Н	L	1	h	Н	Load and read data
L	Н	L	1	Ι	L	Load and read data
L	Н	L	L	Х	Q_0	Hold
L	Н	Н	Х	Х	Q_0	Hold
Н	Х	Х	Х	Х	Z	Disable outputs

H = HIGH voltage level

h = HIGH voltage level one set-up time prior to the Low-to-High clock transition

L = LOW voltage level

= LOW voltage level one set-up time prior to the Low-to-High clock transition

X = Don't care

Z = HIGH impedance "off" state

= LOW to High clock transition

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	CONDITIONS	LIM	UNIT		
STWIBOL	PANAMETEN	CONDITIONS	MIN	MIN MAX		
V	DC supply voltage 2.5V range (for max. speed performance @ 30 pF output load)		2.3	2.7	V	
V _{CC}	DC supply voltage 3.3V range (for max. speed performance @ 50 pF output load)		3.0	3.6	V	
V _{CC}	DC supply voltage (for low-voltage applications)		1.2	3.6	V	
V	DC Input voltage range	for data input pins	0	V _{CC}	V	
V _I	DC input voltage range	for control pins	0	5.5	V	
V _O	DC output voltage range		0	V _{CC}	V	
T _{amb}	Operating free-air temperature range		-40	+85	°C	
t _r , t _f	Input rise and fall times	$V_{CC} = 2.3 \text{ to } 3.0 \text{V}$ $V_{CC} = 3.0 \text{ to } 3.6 \text{V}$	0 0	20 10	ns/V	

ABSOLUTE MAXIMUM RATINGS

In accordance with the Absolute Maximum Rating System (IEC 134). Voltages are referenced to GND (ground = 0V).

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT	
V _{CC}	DC supply voltage		-0.5 to +4.6	V	
I _{IK}	DC input diode current	V ₁ < 0	– 50	mA	
Vı	DC input voltage	For control pins ¹	-0.5 to +5.5	V	
"	DC Input voltage	For data inputs ¹	-0.5 to V _{CC} +0.5	V	
I _{OK}	DC output diode current	$V_O > V_{CC}$ or $V_O < 0$	±50	mA	
V _O	DC output voltage	Note 1	-0.5 to V _{CC} +0.5	V	
I _O	DC output source or sink current	$V_{O} = 0$ to V_{CC}	±50	mA	
I _{GND} , I _{CC}	DC V _{CC} or GND current		±100	mA	
T _{stg}	Storage temperature range		-65 to +150	°C	
P _{TOT}	Power dissipation per package –plastic medium-shrink (SSOP) –plastic thin-medium-shrink (TSSOP)	For temperature range: -40 to +125 °C above +55°C derate linearly with 11.3 mW/K above +55°C derate linearly with 8 mW/K	850 600	mW	

NOTE:

^{1.} The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

18-bit D-type flip-flop (3-State)

74ALVCH16823

DC ELECTRICAL CHARACTERISTICS

Over recommended operating conditions. Voltage are referenced to GND (ground = 0 V).

			<u> </u>	LIMITS		·
SYMBOL	PARAMETER	TEST CONDITIONS		= -40°C to +		רואט
			MIN	TYP ¹	MAX	┞
		V _{CC} = 1.2V	V _{CC}			1
V_{IH}	HIGH level Input voltage	V _{CC} = 1.8V	0.7*V _{CC}	0.9		l v
- 111	The state of the s	$V_{CC} = 2.3 \text{ to } 2.7 \text{V}$	1.7	1.2]
		$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$	2.0	1.5		
		$V_{CC} = 1.2V$		-	GND]
V_{IL}	LOW level Input voltage	$V_{CC} = 1.8V$		0.9	0.2*V _{CC}	l v
- 112		$V_{CC} = 2.3 \text{ to } 2.7 \text{V}$		1.2	0.7]
		$V_{CC} = 2.7 \text{ to } 3.6 \text{V}$		1.5	0.8	
		$V_{CC} = 1.8 \text{ to } 3.6\text{V}; V_I = V_{IH} \text{ or } V_{IL}; I_O = -100\mu\text{A}$	$V_{CC}-0.2$	V _{CC}	_	
		$V_{CC} = 1.8V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6mA$	$V_{CC}-0.4$	V _{CC} -0.10	_	
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = -6$ mA	$V_{CC}-0.3$	V _{CC} -0.08	_]
V_{OH}	HIGH level output voltage	$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12\text{mA}$	V _{CC} -0.5	$V_{CC} - 0.17$	_	٧
		$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -18\text{mA}$	V _{CC} -0.6	V _{CC} -0.26	_	
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = -12\text{mA}$	V _{CC} -0.5	V _{CC} -0.14	_	
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL;} I_O = -24\text{mA}$	V _{CC} -1.0	V _{CC} - 0.28	_	
		$V_{CC} = 1.8 \text{ to } 3.6 \text{V}; \ V_I = V_{IH} \text{ or } V_{IL}; I_O = 100 \mu\text{A}$		GND	0.20	
		$V_{CC} = 1.8V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.09	0.30	1
		$V_{CC} = 2.3V$; $V_I = V_{IH}$ or V_{IL} ; $I_O = 6mA$		0.07	0.20	1
V_{OL}	LOW level output voltage	$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$		0.15	0.40	V
		$V_{CC} = 2.3V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 18\text{mA}$		0.23	0.60	1
		$V_{CC} = 2.7V; V_I = V_{IH} \text{ or } V_{IL}; I_O = 12\text{mA}$		0.14	0.40	1
		$V_{CC} = 3.0V; V_I = V_{IH} \text{ or } V_{IL}, I_O = 24\text{mA}$		0.27	0.55	1
	Input leakage current per control pin	V _{CC} = 1.8 to 3.6V; V _I = 5.5V or GND		0.1	5	
Ι _Ι	Input leakage current per data pin	$V_{CC} = 1.8 \text{ to } 3.6V;$ $V_{I} = V_{CC} \text{ or GND}$		0.1	5	μΑ
l/l	Input current for common I/O	V_{CC} = 1.8 to 2.7V; $V_I = V_{CC}$ or GND		0.1	10	
I _{IHZ} /I _{ILZ}	pins	$V_{CC} = 3.6V;$ $V_I = V_{CC}$ or GND		0.1	15	μΑ
l	3-State output OFF-state	V_{CC} = 1.8 to 2.7V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	5	μΑ
l _{OZ}	current	V_{CC} = 2.7 to 3.6V; V_I = V_{IH} or V_{IL} ; V_O = V_{CC} or GND		0.1	10	μ.
ΔI_{CC}	Additional quiescent supply current given per data I/O pin	$V_{CC} = 2.7V \text{ to } 3.6V; V_I = V_{CC} - 0.6V; I_O = 0$		150	750	μА
I _{BHL}	Bus hold LOW sustaining current	$V_{CC} = 2.3V; V_1 = 0.7V^2$ $V_{CC} = 3.0V; V_1 = 0.8V^2$	45 75	- 150		μΑ
	Bus hold HIGH sustaining	$V_{CC} = 2.3V; V_I = 1.7V^2$	-45		 	\vdash
I _{BHH}	current	$V_{CC} = 3.0V; V_1 = 2.0V^2$	-75	–175	 	μΑ
		$V_{CC} = 2.7V^2$	300	 	 	\vdash
I _{BHLO}	Bus hold LOW overdrive current	$V_{CC} = 3.6V^2$	450		 	μΑ
	Bus hold HIGH overdrive	$V_{CC} = 2.7V^2$	-300	 	 	\vdash
I _{BHHO}	current	$V_{CC} = 3.6V^2$	-450	 		μΑ

All typical values are at T_{amb} = 25°C.
 Valid for data inputs of bus hold parts.

18-bit D-type flip-flop (3-State)

74ALVCH16823

AC CHARACTERISTICS FOR V_{CC} = 2.3V TO 2.7V RANGE AND $V_{CC} < 2.3 \text{V}$

 $GND = 0V; \, t_r = t_f \leq 2.0 ns; \, C_L = 30 pF$

						LIM	ITS				
SYMBOL	PARAMETER	WAVEFORM	Vcc	c = 2.3 to	2.7V	٧	_{CC} = 1.8	3V	V _{CC} = 1.2V	UNIT	
			MIN	TYP ^{1, 2}	MAX	MIN	TYP1	MAX	TYP ¹	1	
t _{PLH} /t _{PHL}	Propagation delay nCP to nQ _n	1, 5	1.0	2.8	4.9	1.5	4.5	7.5	10.6	ns	
t _{PLH} /t _{PHL}	Propagation delay nMR to nQ _n	2, 5	1.0	2.9	5.0	1.5	4.6	7.4	9.9	ns	
t _{PZH} /t _{PZL}	3-State output enable time $n\overline{OE}_n$ to nQ_n	4, 5	1.0	2.8	5.3	1.5	4.4	7.7	10.4	ns	
t _{PHZ} /t _{PLZ}	3-State output disable time $n\overline{OE}_n$ to nQ_n	4, 5	1.0	2.2	4.1	1.5	3.3	5.5	6.7	ns	
t _W	nCP pulse width	1, 5	3.0	1.6		4.0	2.0			ns	
ιW	nMR pulse width, LOW	3, 5	3.0	0.4		4.0	0.8			1115	
t	Set up time nD _n to nCP	3, 5	1.2	0.2		1.5	0.2			nc	
t _{SU}	Set up time nCE to nCP	1 3, 3	1.8	-0.2		2.0	-0.2			ns	
+.	Hold time nD _n to nCP	3, 5	0.8	-0.1		0.6	-0.2			no	
t _h	Hold time nCE to nCP	3, 5	0.3	0.2		0.3	0.2			ns	
t _{rec}	Recovery time nMR to nCP	2, 5	1.0	0.3		0.8	0.2			ns	
F _{max}	Maximum clock pulse frequency	1, 5	150	300		125	250			MHz	

AC CHARACTERISTICS FOR V_{CC} = 3.0V TO 3.6V RANGE AND V_{CC} = 2.7V GND = 0V; t_r = t_f \leq 2.5ns; C_L = 50 pF

					LIN	MITS				
SYMBOL	PARAMETER	WAVEFORM	٧c	cc = 3.0 ± 0	0.3V	'	V _{CC} = 2.7	V	UNIT	
			MIN	TYP ^{1, 2}	MAX	MIN	TYP ¹	MAX	1	
t _{PLH} /t _{PHL}	Propagation delay nCP to nQ _n	1, 5	1.0	2.5	3.7	1.0	2.7	4.3	ns	
t _{PLH} /t _{PHL}	Propagation delay nMR to nQ _n	2, 5	1.0	2.6	4.0	1.0	3.1	4.6	ns	
t _{PZH} /t _{PZL}	3-State output enable time nOE _n to nQ _n	4, 5	1.0	2.5	4.3	1.0	3.1	5.2	ns	
t _{PHZ} /t _{PLZ}	3-State output disable time nOE _n to nQ _n	4, 5	1.0	2.8	3.9	1.0	3.1	4.3	ns	
tw	nCP pulse width HIGH or LOW	1, 5	2.5	1.4		3.0	1.6		ns	
ιW	nMR pulse width HIGH or LOW	3, 5	2.5	0.3		3.0	0.6		1 115	
+	Set up time nD _n to nCP	3, 5	1.2	0.2		1.5	0.4		no	
tsu	Set up time nCE to nCP	3, 5	1.5	-0.1		1.9	-0.1		ns	
	Hold time nD _n to nCP	3, 5	0.8	0.0		0.6	-0.2		no	
t _h	Hold time nCE to nCP	3, 5	0.5	0.1		0.4	0.1		ns	
t _{rec}	Recovery time nMR to nCP	2, 5	1.0	0.2		0.8	0.1		ns	
F _{max}	Maximum clock pulse frequency	1, 5	200	350		150	300		MHz	

All typical values are measured at T_{amb} = 25°C.
 Typical value is measured at V_{CC} = 2.5V.

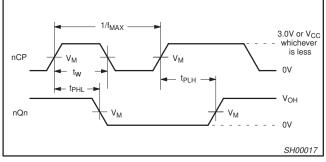
^{1.} All typical values are measured at T_{amb} = 25°C.

^{2.} Typical value is measured at $V_{CC} = 3.3V$.

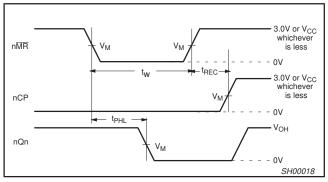
18-bit D-type flip-flop (3-State)

74ALVCH16823

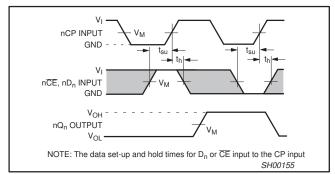
AC WAVEFORMS FOR $V_{CC} = 2.3V$ TO 2.7V AND V_{CC} < 2.3V RANGE

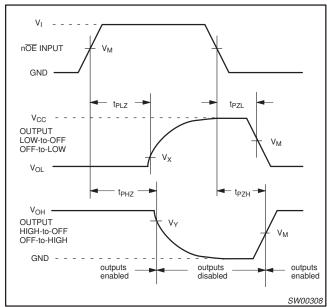

 $V_{M} = 0.5 V_{CC}$ $V_{X} = V_{OL} + 0.15V$ $V_{Y} = V_{OH} - 0.15V$

Vol. and VoH are the typical output voltage drop that occur with the output load.

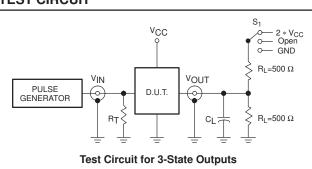

AC WAVEFORMS FOR V_{CC} = 3.0V TO 3.6V AND V_{CC} = 2.7V RANGE V_{M} = 1.5 V V_{X} = V_{OL} + 0.3V V_{Y} = V_{OH} -0.3V

V_{OL} and V_{OH} are the typical output voltage drop that occur with the output load.


 $V_1 = 2.7V$


Waveform 1. Clock (nCP) to Output (nQn) Propagation Delays, Clock Pulse Width, and Maximum Clock Pulse Frequency

Waveform 2. Master Reset (MR) Pulse Width, MR to Output propagation Delay and $\overline{\text{MR}}$ to Clock Recovery Time



Waveform 3. Data Setup and Hold Times for the D_n or CE input to the CP input

Waveform 4, 3-State Enable and Disable Times

TEST CIRCUIT

SWITCH POSITION

TEST	SWITCH
t _{PLH} /t _{PHL}	Open
t _{PLZ} /t _{PZL}	2 * V _{CC}
t _{PHZ} /t _{PZH}	GND

V_{CC}	V_{IN}
< 2.7V 2.7 – 3.6V	V _{CC} 2.7V

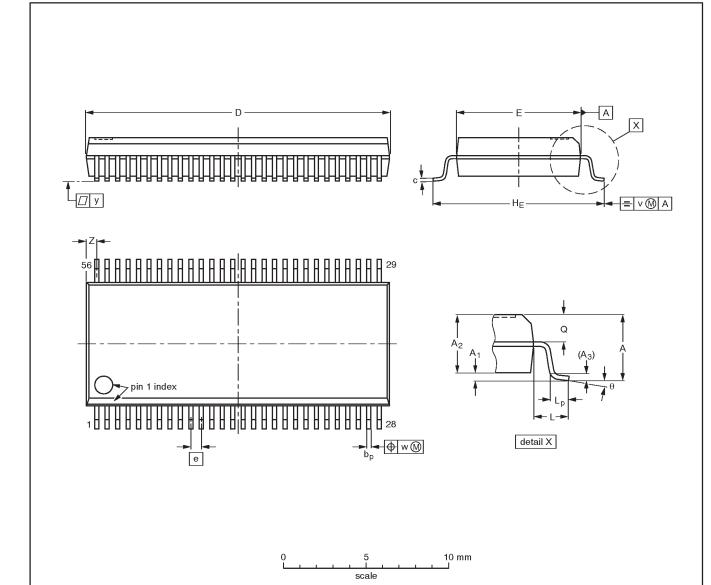
DEFINITIONS

R_L = Load resistor

 C_L = Load capacitance includes jig and probe capacitance

 R_T = Termination resistance should be equal to Z_{OUT} of pulse generators.

SW00047


Waveform 5. Load circuitry for switching times

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

74ALVCH16823

SSOP56: plastic shrink small outline package; 56 leads; body width 7.5 mm

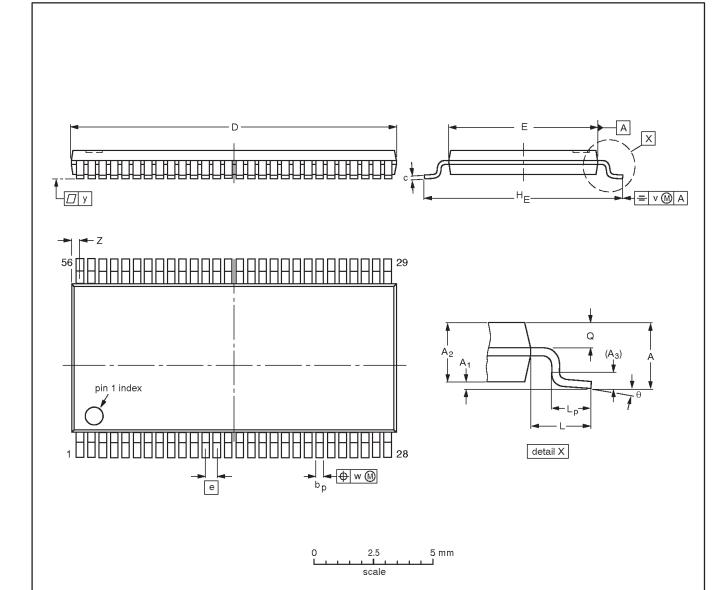
SOT371-1

DIMENSIONS (mm are the original dimensions)

UNIT	A max.	Α ₁	A ₂	A ₃	рb	С	D ⁽¹⁾	E ⁽¹⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ
mm	2.8	0.4 0.2	2.35 2.20	0.25	0.3 0.2	0.22 0.13	18.55 18.30	7.6 7.4	0.635	10.4 10.1	1.4	1.0 0.6	1.2 1.0	0.25	0.18	0.1	0.85 0.40	8° 0°

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.


OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	EIAJ		PROJECTION	ISSUE DATE
SOT371-1		MO-118AB				93-11-02 95-02-04

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

74ALVCH16823

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1mm

SOT364-1

DIMENSIONS (mm are the original dimensions).

UNIT	A max.	A ₁	A ₂	А3	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1.0	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

VERSION IEC JEDEC EIAJ	PROJECTION ISSUE DATE
SOT364-1 MO-153EE	93-02-03 95-02-10

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

74ALVCH16823

NOTES

18-bit bus-interface D-type flip-flop with reset and enable (3-State)

74ALVCH16823

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

^[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification — The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition — Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information — Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support — These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes — Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors 811 East Arques Avenue P.O. Box 3409 Sunnyvale, California 94088–3409 Telephone 800-234-7381 © Copyright Philips Electronics North America Corporation 1998 All rights reserved. Printed in U.S.A.

print code Date of release: 05-96

Document order number: 9397-750-04554

Let's make things better.

Philips Semiconductors

