: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,
On 7 February 2017 the former NXP Standard Product business became a new company with the tradename Nexperia. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.philips.com/ or http://www.semiconductors.philips.com/, use http://www.nexperia.com

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved
Should be replaced with:
- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via salesaddresses@nexperia.com). Thank you for your cooperation and understanding,

Kind regards,
Team Nexperia

DATA SHEET

74ALVT162821
 2.5V/3.3V 20-bit bus-interface
 D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

FEATURES

- Outputs include series resistance of 30Ω making external termination resistors unnecessary
- 20-bit positive-edge triggered register
- 5 V I/O Compatible
- Multiple V_{CC} and GND pins minimize switching noise
- Live insertion/extraction permitted
- Power-up reset
- Power-up 3-State
- Output capability $+12 \mathrm{~mA} /-12 \mathrm{~mA}$
- Latch-up protection exceeds 500mA per Jedec Std 17
- ESD protection exceeds 2000V per MIL STD 883 Method 3015 and 200V per Machine Model
- Bus hold data inputs eliminate the need for external pull-up resistors to hold unused inputs

DESCRIPTION

The 74ALVT162821 high-performance BiCMOS device combines low static and dynamic power dissipation with high speed and high output drive. It is designed for V_{CC} operation at 2.5 V or 3.3 V with I / O compatibility to 5 V .

The 74ALVT162821 has two 10-bit, edge triggered registers, with each register coupled to a 3-State output buffer. The two sections of each register are controlled independently by the clock (nCP) and

Each register is fully edge triggered. The state of each D input, one set-up time before the Low-to-High clock transition, is transferred to the corresponding flip-flop's Q output.

The 3-State output buffers are designed to drive heavily loaded 3-State buses, MOS memories, or MOS microprocessors.

The active Low Output Enable ($n \overline{O E}$) controls all ten 3-State buffers independent of the register operation. When n $\overline{O E}$ is Low, the data in the register appears at the outputs. When n $\overline{O E}$ is High, the outputs are in high impedance "off" state, which means they will neither drive nor load the bus.

The 74ALVT162821 is designed with 30Ω series resistance in both High and Low output stages. This design reduces the line noise in applications such as memory address drivers, clock drivers and bus receivers/transmitters. The series termination resistors reduce overshoot and undershoot and are ideal for driving memory arrays.

QUICK REFERENCE DATA

SYMBOL	PARAMETER	CONDITIONS$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$	TYPICAL		UNIT
			2.5 V	3.3 V	
$\begin{aligned} & t_{\text {PLH }} \\ & t_{\text {PHL }} \end{aligned}$	Propagation delay nCP to nQ	$\mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}$	$\begin{aligned} & 4.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 3.2 \\ & 3.2 \end{aligned}$	ns
$\mathrm{C}_{\text {IN }}$	Input capacitance	$\mathrm{V}_{1}=0 \mathrm{~V}$ or $\mathrm{V}_{\text {CC }}$	3	3	pF
Cout	Output capacitance	$\mathrm{V}_{\mathrm{O}}=0$ or V_{CC}	9	9	pF
I ccz	Total supply current	Outputs disabled	40	70	$\mu \mathrm{A}$

ORDERING INFORMATION

PACKAGES	TEMPERATURE RANGE	OUTSIDE NORTH AMERICA	NORTH AMERICA	DWG NUMBER
56-Pin Plastic SSOP Type III	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	74 ALVT162821 DL	AV162821 DL	SOT371-1
56-Pin Plastic TSSOP Type II	$-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$	$74 \mathrm{ALVT162821} \mathrm{DGG}$	AV162821 DGG	SOT364-1

LOGIC SYMBOL

LOGIC SYMBOL (IEEE/IEC)

PIN CONFIGURATION

SCHEMATIC OF EACH OUTPUT

2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

PIN DESCRIPTION

PIN NUMBER	SYMBOL	FUNCTION
$55,54,52,51,49$, $48,47,45,44,43$, $42,41,40,38,37$, $36,34,33,31,30$	1D0-1D9 2D0-2D9	Data inputs
$2,3,5,6,8,9,10$, $12,13,14$, $15,16,17,19,20$, $21,23,24,26,27$	1 Q0-1Q9 2Q0-2Q9	Data outputs
1,28	$10 \mathrm{E}, 2 \mathrm{OE}$	Output enable inputs (active-Low)
56,29	$1 \mathrm{CP}, 2 \mathrm{CP}$	Clock pulse inputs (active rising edge)
$4,11,18,25,32$, $39,46,53$	GND	Ground (0V)
$7,22,35,50$	VCC	Positive supply voltage

LOGIC DIAGRAM

ABSOLUTE MAXIMUM RATINGS ${ }^{1,2}$

SYMBOL	PARAMETER	CONDITIONS	RATING	UNIT
$\mathrm{V}_{\text {CC }}$	DC supply voltage		-0.5 to +4.6	V
I_{K}	DC input diode current	$\mathrm{V}_{\mathrm{I}}<0$	-50	mA
$\mathrm{~V}_{\mathrm{I}}$	DC input voltage ${ }^{3}$		-1.2 to +7.0	V
$\mathrm{I}_{\text {OK }}$	DC output diode current	$\mathrm{V}_{\mathrm{O}}<0$	-50	mA
$\mathrm{~V}_{\text {OUT }}$	DC output voltage ${ }^{3}$	Output in Off or High state	-0.5 to +7.0	V
$\mathrm{I}_{\text {OUT }}$	DC output current	Output in Low state	128	mA
	Storage temperature range	Output in High state	-64	

NOTES:

1. Stresses beyond those listed may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.
2. The performance capability of a high-performance integrated circuit in conjunction with its thermal environment can create junction temperatures which are detrimental to reliability. The maximum junction temperature of this integrated circuit should not exceed $150^{\circ} \mathrm{C}$.
3. The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

RECOMMENDED OPERATING CONDITIONS

SYMBOL	PARAMETER	2.5V RANGE LIMITS		3.3V RANGE LIMITS		UNIT
		MIN	MAX	MIN	MAX	
V_{CC}	DC supply voltage	2.3	2.7	3.0	3.6	V
V_{1}	Input voltage	0	5.5	0	5.5	V
V_{IH}	High-level input voltage	1.7		2.0		V
$\mathrm{V}_{\text {IL }}$	Input voltage		0.7		0.8	V
I_{OH}	High-level output current		-8		-12	mA
IOL	Low-level output current		12		12	mA
$\Delta t / \Delta v$	Input transition rise or fall rate; Outputs enabled		10		10	ns/V
Tamb	Operating free-air temperature range	-40	+85	-40	+85	${ }^{\circ} \mathrm{C}$

DC ELECTRICAL CHARACTERISTICS (3.3V $\pm 0.3 \mathrm{~V}$ RANGE)

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any $\mathrm{V}_{C C}$ between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{C C}=1.2 \mathrm{~V}$ to $\mathrm{V}_{C C}=3.3 \mathrm{~V} \pm 0.2 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{CC} or GND.
5. $\mathrm{I}_{\mathrm{CCZ}}$ is measured with outputs pulled up to V_{CC} or pulled down to ground.
6. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
7. This is the bus hold overdrive current required to force the input to the opposite logic state.

AC CHARACTERISTICS (3.3V $\pm 0.3 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+3.3 \mathrm{~V} \end{gathered}$			
			MIN	TYP	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	150			MHz
$\begin{aligned} & \text { tpLH } \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nCP to nQx	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & \hline 3.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 4.7 \end{aligned}$	ns
$\begin{aligned} & \hline \text { tpZH } \\ & \mathrm{t}_{\text {PZL }} \end{aligned}$	Output enable time to High and Low level	$\begin{aligned} & \hline 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.0 \\ & 0.5 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 3.4 \\ & 2.3 \end{aligned}$	$\begin{aligned} & 5.6 \\ & 3.7 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PHZ}} \\ & \mathrm{t}_{\mathrm{PLL}} \\ & \hline \end{aligned}$	Output disable time from High and Low level	$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.5 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.7 \\ & 3.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 5.4 \\ & 4.3 \\ & \hline \end{aligned}$	ns

NOTE:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS (3.3V $\pm 0.3 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+3.3 \mathrm{~V} \pm 0.3 \mathrm{~V} \end{gathered}$		
			MIN	TYP	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup time, High or Low nDx to nCP	1	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.1 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low nDx to nCP	2	$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	$\begin{aligned} & 0.1 \\ & 0.1 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	nCP pulse width High or Low	2	$\begin{aligned} & \hline 1.5 \\ & 1.5 \\ & \hline \end{aligned}$		ns

DC ELECTRICAL CHARACTERISTICS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)

SYMBOL	PARAMETER	TEST CONDITIONS			IMITS		UNIT
				Temp $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$			
				MIN	TYP ${ }^{1}$	MAX	
V_{IK}	Input clamp voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{IK}}=-18 \mathrm{~mA}$			-0.85	-1.2	V
V_{OH}	High-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3$ to 3.6 V ; $\mathrm{l}_{\mathrm{OH}}=-100 \mu \mathrm{~A}$		$\mathrm{V}_{\mathrm{CC}}-0.2$	$\mathrm{V}_{\text {cc }}$		V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OH}}=-8 \mathrm{~mA}$		1.8	2.1		
$\mathrm{V}_{\text {OL }}$	Low-level output voltage	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=100 \mu \mathrm{~A}$			0.07	0.2	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA}$			0.3	0.5	
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{l}_{\mathrm{OL}}=8 \mathrm{~mA}$				0.4	
$\mathrm{V}_{\text {RST }}$	Power-up output low voltage ${ }^{7}$	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND				0.55	V
1	Input leakage current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND	Control pins		0.1	± 1	$\mu \mathrm{A}$
		$\mathrm{V}_{\mathrm{CC}}=0$ or $2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=5.5 \mathrm{~V}$			0.1	10	
		$\mathrm{V}_{C C}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$	Data pins ${ }^{4}$		0.1	1	
		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0$			0.1	-5	
IOFF	Off current	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}$ or $\mathrm{V}_{\mathrm{O}}=0$ to 4.5 V			0.1	± 100	$\mu \mathrm{A}$
Inold	Bus Hold current Data inputs ${ }^{6}$	$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=0.7 \mathrm{~V}$			90		$\mu \mathrm{A}$
		$\mathrm{V}_{C C}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=1.7 \mathrm{~V}$			-10		$\mu \mathrm{A}$
$l_{\text {EX }}$	Current into an output in the High state when $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}$	$\mathrm{V}_{\mathrm{O}}=5.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$			10	125	$\mu \mathrm{A}$
IPU/PD	Power up/down 3-State output current ${ }^{3}$	$\begin{aligned} & \mathrm{V}_{\mathrm{CC}} \leq 1.2 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} ; \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} \\ & \mathrm{OE} / \mathrm{OE}=\text { Don't care } \end{aligned}$			1	± 100	$\mu \mathrm{A}$
$\mathrm{I}_{\text {OZH }}$	3-State output High current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=2.3 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IL}}$ or V_{IH}			0.5	5	$\mu \mathrm{A}$
lozl	3-State output Low current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V} ; \mathrm{V}_{\mathrm{O}}=0.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IL }}$ or $\mathrm{V}_{\text {IH }}$			0.5	-5	$\mu \mathrm{A}$
$\mathrm{I}_{\mathrm{CCH}}$	Quiescent supply current	$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs High, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0$			0.04	0.1	mA
$\mathrm{I}_{\text {CCL }}$		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Low, $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{l}_{\mathrm{O}}=0$			2.3	4.5	
ICCz		$\mathrm{V}_{\mathrm{CC}}=2.7 \mathrm{~V}$; Outputs Disabled; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or $\mathrm{V}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{O}}=0^{5}$			0.04	0.1	
$\Delta_{\text {l }} \mathrm{C}$	Additional supply current per input pin ${ }^{2}$	$\begin{aligned} & \hline \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V} \text { to } 2.7 \mathrm{~V} \text {; One input at } \mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} \text {, } \\ & \text { Other inputs at } \mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} \end{aligned}$			0.04	0.4	mA

NOTES:

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.
2. This is the increase in supply current for each input at the specified voltage level other than V_{CC} or GND
3. This parameter is valid for any V_{CC} between 0 V and 1.2 V with a transition time of up to 10 msec . From $\mathrm{V}_{\mathrm{CC}}=1.2 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}=2.5 \mathrm{~V} \pm 0.3 \mathrm{~V}$ a transition time of $100 \mu \mathrm{sec}$ is permitted. This parameter is valid for $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$ only.
4. Unused pins at V_{CC} or GND.
5. $\mathrm{I}_{\mathrm{CCZ}}$ is measured with outputs pulled up to V_{CC} or pulled down to ground.
6. Not guaranteed.
7. For valid test results, data must not be loaded into the flip-flops (or latches) after applying power.
2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

AC CHARACTERISTICS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V} ; \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns} ; \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} ; \mathrm{R}_{\mathrm{L}}=500 \Omega ; \mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$.

SYMBOL	PARAMETER	WAVEFORM	LIMITS			UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+2.5 \mathrm{~V} \pm 0.2 \mathrm{~V} \end{gathered}$			
			MIN	TYP	MAX	
$\mathrm{f}_{\text {MAX }}$	Maximum clock frequency	1	150			MHz
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PLH}} \\ & \mathrm{t}_{\mathrm{PHL}} \end{aligned}$	Propagation delay nCP to nQx	1	$\begin{aligned} & 1.0 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.4 \\ & 3.8 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.4 \end{aligned}$	ns
tpZH	Output enable time to High and Low level	$\begin{aligned} & 3 \\ & 4 \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \end{aligned}$	$\begin{aligned} & 4.6 \\ & 2.8 \end{aligned}$	$\begin{aligned} & \hline 7.5 \\ & 4.6 \end{aligned}$	ns
$\begin{aligned} & \text { tpHz } \\ & \mathrm{t}_{\mathrm{PLLZ}} \\ & \hline \end{aligned}$	Output disable time from High and Low level	$\begin{aligned} & 3 \\ & 4 \\ & \hline \end{aligned}$	$\begin{aligned} & 1.5 \\ & 1.0 \\ & \hline \end{aligned}$	$\begin{aligned} & 3.5 \\ & 3.7 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 5.7 \end{aligned}$	ns

OT

1. All typical values are at $\mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V}$ and $\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$.

AC SETUP REQUIREMENTS ($2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ RANGE)
$\mathrm{GND}=0 \mathrm{~V}, \mathrm{t}_{\mathrm{R}}=\mathrm{t}_{\mathrm{F}}=2.5 \mathrm{~ns}, \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF}, \mathrm{R}_{\mathrm{L}}=500 \Omega$

SYMBOL	PARAMETER	WAVEFORM	LIMITS		UNIT
			$\begin{gathered} \mathrm{T}_{\mathrm{amb}}=-40 \text { to }+85^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{cc}}=+2.5 \pm 0.2 \mathrm{~V} \end{gathered}$		
			MIN	TYP	
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \\ & \hline \end{aligned}$	Setup time, High or Low nDx to nCP	1	$\begin{aligned} & \hline 1.5 \\ & 2.0 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 0.1 \\ & 0.5 \end{aligned}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{h}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{h}}(\mathrm{~L}) \end{aligned}$	Hold time, High or Low nDx to nCP	2	$\begin{aligned} & \hline 0.3 \\ & 0.5 \end{aligned}$	$\begin{aligned} & \hline-0.5 \\ & -0.1 \end{aligned}$	ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	nCP pulse width High or Low	2	$\begin{aligned} & 1.5 \\ & 1.5 \end{aligned}$		ns

AC WAVEFORMS

$\mathrm{V}_{\mathrm{M}}=1.5 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{M}}=\mathrm{V}_{\mathrm{CC}} / 2$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{X}}=\mathrm{V}_{\mathrm{OL}}+0.15 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$
$\mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.3 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \geq 3.0 \mathrm{~V} ; \mathrm{V}_{\mathrm{Y}}=\mathrm{V}_{\mathrm{OH}}-0.15 \mathrm{~V}$ at $\mathrm{V}_{\mathrm{CC}} \leq 2.7 \mathrm{~V}$

Waveform 1. Propagation Delay, Clock Input to Output, Clock Pulse Width, and Maximum Clock frequency

Waveform 2. Data Setup and Hold Times
2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

Waveform 3. 3-State Output Enable Time to High Level and Output Disable Time from High Level

Waveform 4. 3-State Output Enable Time to Low Level and Output Disable Time from Low Level

TEST CIRCUIT AND WAVEFORM

SWITCH POSITION

TEST	SWITCH
	6 V or $\mathrm{V}_{\mathrm{CC} \times 2}$ Open GND

DEFINITIONS

$R_{L}=$ Load resistor; see AC CHARACTERISTICS for value.
$C_{L}=$ Load capacitance includes jig and probe capacitance: See AC CHARACTERISTICS for value.
$R_{T}=$ Termination resistance should be equal to $Z_{\text {OUT }}$ of pulse generators.

FAMILY	INPUT PULSE REQUIREMENTS				
	Amplitude	Rep. Rate	t_{W}	t_{R}	t_{F}
74ALVT16	3.0V or $V_{C C}$ whichever is less	$\leq 10 \mathrm{MHz}$	500 ns	$\leq 2.5 \mathrm{~ns}$	$\leq 2.5 \mathrm{~ns}$

2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

DIMENSIONS (mm are the original dimensions)

UNIT	\mathbf{A} max.	$\mathbf{A}_{\mathbf{1}}$	$\mathbf{A}_{\mathbf{2}}$	$\mathbf{A}_{\mathbf{3}}$	$\mathbf{b}_{\mathbf{p}}$	\mathbf{c}	$\mathbf{D}^{(1)}$	$\mathbf{E}^{(1)}$	\mathbf{e}	$\mathbf{H}_{\mathbf{E}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{p}}$	\mathbf{Q}	\mathbf{v}	\mathbf{w}	\mathbf{y}	$\mathbf{Z}^{(1)}$	$\boldsymbol{\theta}$
mm	2.8	0.4	2.35	0.25	0.3	0.22	18.55	7.6	0.635	10.4	1.4	1.0	1.2	0.25	0.18	0.1	0.85	
0.2	0.20	0.13	18.30	7.4	0.4													

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJJECTION	ISSUE DATE
	IEC	JEDEC	EIAJ			
SOT371-1		MO-118AB			$-93-11-02$	

2.5V/3.3V 20-bit bus-interface D-type flip-flop; positive-edge trigger with 30Ω termination resistors (3-State)

detail X
MSA400

Dimensions in mm.

Data sheet status

Data sheet status	Product status	Definition [1]
Objective specification	Development	This data sheet contains the design target or goal specifications for product development. Specification may change in any manner without notice.
Preliminary specification	Qualification	This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips Semiconductors reserves the right to make chages at any time without notice in order to improve design and supply the best possible product.
Product specification	Production	This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any time without notice in order to improve design and supply the best possible product.

[1] Please consult the most recently issued datasheet before initiating or completing a design.

Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.
Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.
Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

Disclaimers

Life support - These products are not designed for use in life support appliances, devices or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.
Right to make changes - Philips Semiconductors reserves the right to make changes, without notice, in the products, including circuits, standard cells, and/or software, described or contained herein in order to improve design and/or performance. Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

Philips Semiconductors

811 East Arques Avenue
P.O. Box 3409

Sunnyvale, California 94088-3409
Telephone 800-234-7381

