

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Rev. 10 — 28 October 2016

Product data sheet

1. General description

The 74AUP1G74 provides a low-power, low-voltage single positive-edge triggered D-type flip-flop with individual data (D), clock (CP), set (\overline{SD}) and reset (\overline{RD}) inputs and complementary Q and \overline{Q} outputs. The \overline{SD} and \overline{RD} are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - ◆ MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; I_{CC} = 0.9 μA (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

Low-power D-type flip-flop with set and reset; positive-edge trigger

3. Ordering information

Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AUP1G74DC	-40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74AUP1G74GT	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1
74AUP1G74GF	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1 \times 0.5$ mm	SOT1089
74AUP1G74GD	-40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body $3 \times 2 \times 0.5$ mm	SOT996-2
74AUP1G74GM	-40 °C to +125 °C	XQFN8	plastic, extremely thin quad flat package; no leads; 8 terminals; body $1.6 \times 1.6 \times 0.5$ mm	SOT902-2
74AUP1G74GN	−40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.2 \times 1.0 \times 0.35$ mm	SOT1116
74AUP1G74GS	-40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203
74AUP1G74GX[1]	-40 °C to +125 °C	X2SON8	plastic thermal enhanced extremely thin small outline package; no leads; 8 terminals; body $1.35\times0.8\times0.35$ mm	SOT1233

^[1] Type number 74AUP1G74GX is in development.

4. Marking

Table 2. Marking codes

Type number	Marking code ^[1]
74AUP1G74DC	p74
74AUP1G74GT	p74
74AUP1G74GF	54
74AUP1G74GD	p74
74AUP1G74GM	p74
74AUP1G74GN	54
74AUP1G74GS	54
74AUP1G74GX	54

^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

Low-power D-type flip-flop with set and reset; positive-edge trigger

5. Functional diagram

Low-power D-type flip-flop with set and reset; positive-edge trigger

6. Pinning information

6.1 Pinning

Low-power D-type flip-flop with set and reset; positive-edge trigger

6.2 Pin description

Table 3. Pin description

Symbol	Pin		Description
	SOT765-1, SOT833-1, SOT1089, SOT996-2, SOT1116, SOT1203 and SOT1233	SOT902-2	
CP	1	7	clock input
D	2	6	data input
Q	3	5	complement output
GND	4	4	ground (0 V)
Q	5	3	true output
RD	6	2	asynchronous reset input (active LOW)
SD	7	1	asynchronous set input (active LOW)
V _{CC}	8	8	supply voltage

7. Functional description

Table 4. Function table for asynchronous operation[1]

Input				Output		
SD	RD	СР	D	Q	Q	
L	Н	X	X	Н	L	
Н	L	Х	X	L	Н	
L	L	X	X	Н	Н	

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care.

Table 5. Function table for synchronous operation[1]

Input				Output			
SD	RD	СР	D	Q _{n+1}	Q _{n+1}		
Н	Н	↑	L	L	Н		
Н	Н	\uparrow	Н	Н	L		

^[1] H = HIGH voltage level;

L = LOW voltage level;

X = don't care;

↑ = LOW-to-HIGH CP transition;

 \mathbf{Q}_{n+1} = state after the next LOW-to-HIGH CP transition.

Low-power D-type flip-flop with set and reset; positive-edge trigger

8. Limiting values

Table 6. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Davamatav	Conditions		N.A.:	Mass	11
Parameter	Conditions		IVIIN	wax	Unit
supply voltage			-0.5	+4.6	V
input clamping current	V _I < 0 V		-50	-	mA
input voltage		[1]	-0.5	+4.6	V
output clamping current	V _O < 0 V		-50	-	mA
output voltage	Active mode and Power-down mode	[1]	-0.5	+4.6	V
output current	$V_O = 0 \text{ V to } V_{CC}$		-	±20	mA
supply current			-	+50	mA
ground current			-50	-	mA
storage temperature			-65	+150	°C
total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	[2]	-	250	mW
	input clamping current input voltage output clamping current output voltage output current supply current ground current storage temperature	supply voltage input clamping current $V_I < 0 \text{ V}$ input voltage output clamping current $V_O < 0 \text{ V}$ output voltage Active mode and Power-down mode output current $V_O = 0 \text{ V}$ to V_{CC} supply current ground current storage temperature	supply voltage input clamping current $V_I < 0 \text{ V}$ input voltage [1] output clamping current $V_O < 0 \text{ V}$ output voltage Active mode and Power-down mode [1] output current $V_O = 0 \text{ V}$ to V_{CC} supply current ground current storage temperature	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

^[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 7. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	0	V _{CC}	V
		Power-down mode; V _{CC} = 0 V	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
Δt/ΔV	input transition rise and fall rate	V _{CC} = 0.8 V to 3.6 V	-	200	ns/V

^[2] For VSSOP8 packages: above 110 °C the value of P_{tot} derates linearly with 8.0 mW/K.
For XSON8 and XQFN8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.
For X2SON8 package: above 118 °C the value of P_{tot} derates linearly with 7.7 mW/K.

Low-power D-type flip-flop with set and reset; positive-edge trigger

10. Static characteristics

Table 8. Static characteristics

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = 2	5 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	٧
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	V
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = -20 \mu A$; $V_{CC} = 0.8 \text{ V}$ to 3.6 V	V _{CC} - 0.1	-	-	V
		$I_O = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	V
		$I_O = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_O = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_O = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		$I_O = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.31	V
		$I_O = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.31	V
		$I_O = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_O = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
I _I	input leakage current	$V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μА
I_{OFF}	power-off leakage current	V_{I} or $V_{O} = 0 V$ to 3.6 V; $V_{CC} = 0 V$	-	-	±0.2	μА
ΔI_{OFF}	additional power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.2	μΑ
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.5	μΑ
Δl _{CC}	additional supply current	$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}; \text{ per pin}$	-	-	40	μΑ
Cı	input capacitance	$V_{CC} = 0 \text{ V to } 3.6 \text{ V}; V_I = \text{GND or } V_{CC}$	-	0.6	-	pF
Co	output capacitance	$V_O = GND; V_{CC} = 0 V$	-	1.3	-	pF

Low-power D-type flip-flop with set and reset; positive-edge trigger

 Table 8.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +85 °C					
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.65 \times V_{CC}$	-	-	٧
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	٧
		V _{CC} = 3.0 V to 3.6 V	2.0	-	-	٧
V _{IL}	$\begin{array}{c} V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.8 \ V \\ V_{CC} = 0.8 \ V \\ V_{CC} = 0.9 \ V \ to \ 1.95 \ V \\ V_{CC} = 2.3 \ V \ to \ 2.7 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 2.3 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 3.0 \ V \ to \ 3.6 \ V \\ V_{CC} = 0.1 \ V_{CC} = 0.9 \\ \hline \end{array}$	$0.30 \times V_{CC}$	٧			
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	٧
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$V_I = V_{IH}$ or V_{IL}					
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	V _{CC} - 0.1	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.7 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	٧
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55 -		-	V
V _{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_O = 20 \ \mu A; V_{CC} = 0.8 \ V \text{ to } 3.6 \ V$	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		$I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.33	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.33	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
l _l	input leakage current	$V_{I} = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μА
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V	-	-	±0.5	μА
ΔI_{OFF}					±0.6	μΑ
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	0.9	μΑ
ΔI_{CC}	additional supply current	$V_1 = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}; \text{ per pin}$	-	-	50	μΑ

Low-power D-type flip-flop with set and reset; positive-edge trigger

 Table 8.
 Static characteristics ...continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
T _{amb} = -	40 °C to +125 °C					1
V _{IH}	HIGH-level input voltage	V _{CC} = 0.8 V	$0.75 \times V_{CC}$	-	-	V
		V _{CC} = 0.9 V to 1.95 V	$0.70 \times V_{CC}$	-	-	V
		V _{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		V _{CC} = 3.0 V to 3.6 V	0.75 × V _{CC} -	V		
V _{IL}	LOW-level input voltage	V _{CC} = 0.8 V	-	-	$0.25 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.30 \times V_{CC}$	V
		V _{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V _{CC} = 3.0 V to 3.6 V	-	-	0.9	V
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -20 \mu A$; $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	V _{CC} - 0.11	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.33 \times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		$I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.39	V
		$I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.50	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
I _I	input leakage current	$V_1 = GND \text{ to } 3.6 \text{ V}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μА
I_{OFF}	power-off leakage current	V_1 or $V_0 = 0 V$ to 3.6 V; $V_{CC} = 0 V$	-	-	±0.75	μА
ΔI_{OFF}	additional power-off leakage current	V_{I} or $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 0.2 V	-	-	±0.75	μΑ
I _{CC}	supply current	V_{I} = GND or V_{CC} ; I_{O} = 0 A; V_{CC} = 0.8 V to 3.6 V	-	-	1.4	μΑ
Δl _{CC}	additional supply current	$V_I = V_{CC} - 0.6 \text{ V}; I_O = 0 \text{ A};$ [1] $V_{CC} = 3.3 \text{ V}; \text{ per pin}$	-	-	75	μΑ

^[1] One input at V_{CC} – 0.6 V, other input at V_{CC} or GND.

Low-power D-type flip-flop with set and reset; positive-edge trigger

11. Dynamic characteristics

Table 9. Dynamic characteristics

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	Taı	_{nb} = 25	°C	T _{ar}	_{nb} = -40 °	C to +	125 °C	Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
C _L = 5 pl	F									
t _{pd}	propagation	CP to Q, Q; see Figure 9								
	delay	V _{CC} = 0.8 V	-	25.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	6.7	14.0	2.6	14.2	2.6	14.2	ns
		V _{CC} = 1.4 V to 1.6 V	2.4	4.5	7.6	2.3	8.3	2.3	8.6	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	3.5	5.7	1.7	6.5	1.7	6.8	ns
		V _{CC} = 2.3 V to 2.7 V	1.7	2.6	3.8	1.4	4.4	1.4	4.7	ns
		V _{CC} = 3.0 V to 3.6 V	1.5	2.2	3.1	1.2	3.4	1.2	3.7	ns
		\overline{SD} to Q, \overline{Q} ; see $\underline{[2]}$ Figure 10								
		V _{CC} = 0.8 V	-	19.6	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.7	5.6	11.0	2.5	11.4	2.5	11.5	ns
		V _{CC} = 1.4 V to 1.6 V	2.4	4.0	6.3	2.2	6.9	2.2	7.3	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	3.3	4.9	1.7	5.6	1.7	5.9	ns
		V _{CC} = 2.3 V to 2.7 V	1.9	2.7	3.7	1.7	4.0	1.7	4.2	ns
		V _{CC} = 3.0 V to 3.6 V	1.8	2.5	3.2	1.5	3.6	1.5	3.8	ns
		$\overline{R}D$ to Q, \overline{Q} ; see $\underline{[2]}$ Figure 10								
		$V_{CC} = 0.8 \text{ V}$	-	19.2	-	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	2.6	5.5	11.0	2.5	11.3	2.5	11.5	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	2.3	3.9	6.3	2.2	6.8	2.2	7.3	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	1.9	3.2	5.0	1.8	5.6	1.8	5.9	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	1.9	2.6	3.6	1.7	4.1	1.7	4.3	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.8	2.4	3.3	1.5	3.6	1.5	3.8	ns
f _{max}	maximum	CP; see Figure 9								
	frequency	$V_{CC} = 0.8 \text{ V}$	-	53	-	-	-	-	-	MHz
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	203	-	170	-	170	-	MHz
		V _{CC} = 1.4 V to 1.6 V	-	347	-	310	-	300	-	MHz
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	435	-	400	-	390	-	MHz
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	550	-	490	-	480	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	619	-	550	-	510	-	MHz

74AUP1G74 Nexperia

Low-power D-type flip-flop with set and reset; positive-edge trigger

Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 11</u>.

Symbol	Parameter	Conditions	Tai	_{mb} = 25	°C	Tan	_{nb} = -40 °	°C to +	125 °C	Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
C _L = 10 p	o F	,								
t _{pd}	propagation	CP to Q, \overline{Q} ; see Figure 9								
	delay	V _{CC} = 0.8 V	-	28.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.1	7.5	15.8	2.9	16.1	2.9	16.1	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	2.7	5.1	8.7	2.4	9.4	2.4	9.8	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	2.5	4.1	6.5	2.2	7.2	2.2	7.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.0	3.2	4.6	1.8	5.3	1.8	5.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	1.8	2.8	3.8	1.6	4.1	1.6	4.4	ns
		\overline{SD} to Q, \overline{Q} ; see $\underline{Figure 10}$								
		V _{CC} = 0.8 V	-	23.2	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.9	6.5	12.9	2.8	13.3	2.8	13.5	ns
		V _{CC} = 1.4 V to 1.6 V	2.7	4.6	7.5	2.3	7.9	2.3	8.3	ns
		V _{CC} = 1.65 V to 1.95 V	2.6	3.9	5.6	2.3	6.3	2.3	6.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.3	3.2	4.4	2.0	4.8	2.0	5.2	ns
		V _{CC} = 3.0 V to 3.6 V	2.2	3.0	3.9	1.9	4.2	1.9	4.4	ns
		$\overline{R}D$ to Q, \overline{Q} ; see Figure 10								
		$V_{CC} = 0.8 \text{ V}$	-	22.7	-	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	2.8	6.4	12.8	2.7	13.2	2.7	13.4	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	2.6	4.5	7.5	2.3	8.1	2.3	8.4	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	2.5	3.3	5.8	2.3	6.3	2.3	6.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.2	3.2	4.4	2.0	4.9	2.0	5.2	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.0	2.9	4.0	1.9	4.3	1.9	4.5	ns
f _{max}	maximum	CP; see Figure 9								
	frequency	$V_{CC} = 0.8 \text{ V}$	-	52	-	-	-	-	-	MHz
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	192	-	150	-	150	-	MHz
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	324	-	280	-	230	-	MHz
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	421	-	310	-	250	-	MHz
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	486	-	370	-	360	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	550	-	410	-	360	-	MHz

Low-power D-type flip-flop with set and reset; positive-edge trigger

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	Tai	_{mb} = 25	°C	T _{amb} = -40 °C to +125 °C				Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
C _L = 15	pF		•		<u>'</u>					
t _{pd}	propagation	CP to Q, Q; see Figure 9								
	delay	V _{CC} = 0.8 V	-	32.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.5	8.3	17.6	3.3	17.8	3.3	18.0	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	3.2	5.6	9.5	2.8	10.5	2.8	11.1	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	2.7	4.6	7.2	2.5	8.1	2.5	8.6	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.4	3.6	5.2	2.2	5.8	2.2	6.2	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.2	3.2	4.4	2.0	4.9	2.0	5.2	ns
		\overline{SD} to Q, \overline{Q} ; see $\underline{[2]}$ Figure 10								
		V _{CC} = 0.8 V	-	26.7	-	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	3.3	7.3	14.7	3.1	15.2	3.1	15.4	ns
		V _{CC} = 1.4 V to 1.6 V	3.2	5.2	8.3	2.9	9.0	2.9	9.5	ns
		V _{CC} = 1.65 V to 1.95 V	2.8	4.3	6.4	2.5	7.1	2.5	7.5	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.8	3.7	5.1	2.2	5.5	2.2	5.8	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.5	3.5	4.6	2.4	5.0	2.4	5.2	ns
		RD to Q, Q; see [2] Figure 10								
		V _{CC} = 0.8 V	-	26.1	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	7.2	14.5	3.1	15.0	3.1	15.2	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	3.1	5.1	8.4	2.7	9.2	2.7	9.7	ns
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	2.7	4.3	6.5	2.6	7.3	2.6	7.7	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	2.6	3.6	5.0	2.4	5.5	2.4	5.8	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	2.4	3.4	4.6	2.3	5.0	2.3	5.2	ns
f _{max}	maximum	CP; see Figure 9								
	frequency	$V_{CC} = 0.8 \text{ V}$	-	50	-	-	-	-	-	MHz
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	181	-	120	-	120	-	MHz
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	301	-	190	-	160	-	MHz
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	407	-	240	-	190	-	MHz
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	422	-	300	-	270	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	481	-	320	-	300	-	MHz

74AUP1G74 Nexperia

Low-power D-type flip-flop with set and reset; positive-edge trigger

Table 9. Dynamic characteristics ...continued Voltages are referenced to GND (ground = 0 V); for test circuit see <u>Figure 11</u>.

Symbol	Parameter	Conditions	Tai	_{mb} = 25	°C	T _{amb} = -40 °C to +125 °C				Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
C _L = 30 p	o F	'								
t _{pd}	propagation	CP to Q, Q; see Figure 9								
	delay	V _{CC} = 0.8 V	-	42.7	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.2	10.6	22.5	4.0	23.0	4.0	23.3	ns
		V _{CC} = 1.4 V to 1.6 V	3.7	7.2	12.0	3.7	13.3	3.7	14.0	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	5.8	9.2	3.4	10.4	3.4	11.0	ns
		V _{CC} = 2.3 V to 2.7 V	3.3	4.7	6.6	3.0	7.3	3.0	7.8	ns
		V _{CC} = 3.0 V to 3.6 V	3.0	4.3	5.8	2.8	6.8	2.8	7.3	ns
		\overline{SD} to Q, \overline{Q} ; see Figure 10								
		V _{CC} = 0.8 V	-	37.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.0	9.5	19.8	3.8	20.8	3.8	21.1	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	3.8	6.7	10.9	3.7	12.0	3.7	12.7	ns
		V _{CC} = 1.65 V to 1.95 V	3.7	5.6	8.4	3.5	9.3	3.5	9.9	ns
		V _{CC} = 2.3 V to 2.7 V	3.7	4.8	6.6	3.2	7.2	3.2	7.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	3.4	4.6	6.0	3.1	6.8	3.1	7.1	ns
		RD to Q, Q; see [2] Figure 10								
		V _{CC} = 0.8 V	-	36.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.9	9.4	19.5	3.8	20.2	3.8	20.5	ns
		V _{CC} = 1.4 V to 1.6 V	3.6	6.6	10.9	3.7	12.0	3.7	12.6	ns
		V _{CC} = 1.65 V to 1.95 V	3.5	5.5	8.5	3.5	9.5	3.5	10.1	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	3.5	4.7	6.5	3.2	7.1	3.2	7.6	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	3.3	4.4	6.1	3.1	7.1	3.1	7.5	ns
f _{max}	maximum	CP; see Figure 9								
	frequency	V _{CC} = 0.8 V	-	28	-	-	-	-	-	MHz
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	145	-	70	-	70	-	MHz
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	185	-	120	-	110	-	MHz
		$V_{CC} = 1.65 \text{ V to } 1.95 \text{ V}$	-	270	-	150	-	120	-	MHz
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	290	-	190	-	170	-	MHz
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	315	-	200	-	190	-	MHz

Low-power D-type flip-flop with set and reset; positive-edge trigger

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	Ta	_{mb} = 25	°C	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
C _L = 5 p	F, 10 pF, 15 pF ar	nd 30 pF								
t _{su}	set-up time	D to CP HIGH; see Figure 9								
		V _{CC} = 0.8 V	-	3.4	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	0.6	-	1.2	-	1.2	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	0.3	-	0.6	-	0.6	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.4	-	0.5	-	0.5	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	0.2	-	0.4	-	0.4	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	0.3	-	0.4	-	0.4	-	ns
		D to CP LOW; see Figure 9								
		V _{CC} = 0.8 V	-	3.0	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	0.5	-	1.2	-	1.2	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	0.3	-	0.7	-	0.7	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.4	-	0.7	-	0.7	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.5	-	0.7	-	0.7	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.6	-	0.8	-	0.8	-	ns
t _h	hold time	D to CP; see Figure 9								
		V _{CC} = 0.8 V	-	-1.9	-	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	-	-0.3	-	0.5	-	0.5	-	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	-0.2	-	0.2	-	0.2	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	-0.2	-	0.1	-	0.1	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-0.2	-	0.1	-	0.1	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-0.2	-	0.1	-	0.1	-	ns
t _{rec}	recovery time	RD; see Figure 10								
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	-	-0.5	-	-0.9	-	-0.9	-	ns
		$V_{CC} = 1.4 \text{ V to } 1.6 \text{ V}$	-	-0.2	-	-0.6	-	-0.6	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	-0.2	-	-0.4	-	-0.4	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	-0.1	-	-0.1	-	-0.1	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	-0.1	-	-0.1	-	-0.1	-	ns
		SD; see Figure 10								
		V _{CC} = 1.1 V to 1.3 V	-	-0.5	-	-0.3	-	-0.3	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	-0.4	-	-0.1	-	-0.1	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	-0.3	-	0	-	0	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	-0.2	-	0.1	-	0.1	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	-0.1	-	0.1	-	0.1	-	ns

Low-power D-type flip-flop with set and reset; positive-edge trigger

 Table 9.
 Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	T _{amb} = 25 °C			$T_{amb} = -40$ °C to +125 °C				Unit
			Min	Typ[1]	Max	Min	Max (85 °C)	Min	Max (125 °C)	
t _W	pulse width	CP HIGH or LOW; see Figure 9								
		V _{CC} = 1.1 V to 1.3 V	-	2.1	-	2.7	-	2.7	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	1.1	-	1.5	-	1.5	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	0.9	-	1.6	-	1.6	-	ns
		V _{CC} = 2.3 V to 2.7 V	-	0.6	-	1.7	-	1.7	-	ns
		V _{CC} = 3.0 V to 3.6 V	-	0.6	-	1.9	-	1.9	-	ns
		SD or RD LOW; see Figure 10								
		V _{CC} = 1.1 V to 1.3 V	-	4.2	-	11.3	-	11.5	-	ns
		V _{CC} = 1.4 V to 1.6 V	-	2.3	-	6.2	-	6.4	-	ns
		V _{CC} = 1.65 V to 1.95 V	-	1.8	-	4.8	-	5.0	-	ns
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	1.2	-	3.3	-	3.5	-	ns
		$V_{CC} = 3.0 \text{ V to } 3.6 \text{ V}$	-	1.1	-	2.6	-	2.8	-	ns
C _{PD}	power dissipation capacitance	$f_i = 1 \text{ MHz};$ [3] $V_I = \text{GND to } V_{CC}$								
		V _{CC} = 0.8 V	-	2.8	-	-	-	-	-	рF
		V _{CC} = 1.1 V to 1.3 V	-	2.9	-	-	-	-	-	pF
		V _{CC} = 1.4 V to 1.6 V	-	3.0	-	-	-	-	-	pF
		V _{CC} = 1.65 V to 1.95 V	-	3.0	-	-	-	-	-	рF
		$V_{CC} = 2.3 \text{ V to } 2.7 \text{ V}$	-	3.5	-	-	-	-	-	pF
		V _{CC} = 3.0 V to 3.6 V	-	3.9	-	-	-	-	-	pF

- [1] All typical values are measured at nominal V_{CC} .
- [2] t_{pd} is the same as t_{PLH} and t_{PHL} .
- [3] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

$$P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$$

 f_i = input frequency in MHz;

f_o = output frequency in MHz;

C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o) = \text{sum of outputs.}$

Low-power D-type flip-flop with set and reset; positive-edge trigger

12. Waveforms

Measurement points are given in Table 10.

The shaded areas indicate when the input is permitted to change for predictable output performance.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 9. The clock input (CP) to output (Q, \overline{Q}) propagation delays, the data input (D) to clock input (CP) set-up and hold times and the clock input (CP) pulse width and maximum frequency

Table 10. Measurement points

Supply voltage	Output	Input		
V _{CC}	V _M	V _M	VI	$t_r = t_f$
0.8 V to 3.6 V	$0.5 \times V_{CC}$	$0.5 \times V_{CC}$	V _{CC}	≤ 3.0 ns

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 10. The set input (SD) and reset input (RD) to output (Q, Q) propagation delays, the set input (SD) and reset input (RD) pulse widths and the reset input (RD) to clock input (CP) recovery time

Low-power D-type flip-flop with set and reset; positive-edge trigger

Test data is given in Table 11.

Definitions for test circuit:

R_L = Load resistance.

C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance should be equal to the output impedance Z_0 of the pulse generator.

 V_{EXT} = External voltage for measuring switching times.

Fig 11. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Load		V _{EXT}		
V _{CC}	C _L	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$

[1] For measuring enable and disable times R_L = 5 k Ω For measuring propagation delays, setup and hold times and pulse width R_L = 1 M Ω .

Low-power D-type flip-flop with set and reset; positive-edge trigger

13. Package outline

Fig 12. Package outline SOT765-1 (VSSOP8)

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 13. Package outline SOT833-1 (XSON8)

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 14. Package outline SOT1089 (XSON8)

74AUP1G74

All information provided in this document is subject to legal disclaimers.

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 15. Package outline SOT996-2 (XSON8)

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 16. Package outline SOT902-2 (XQFN8)

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 17. Package outline SOT1116 (XSON8)

74AUP1G74

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Fig 18. Package outline SOT1203 (XSON8)