: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

74AUP1G74

Low-power D-type flip-flop with set and reset; positive-edge trigger

Rev. 10 - 28 October 2016
Product data sheet

1. General description

The 74AUP1G74 provides a low-power, low-voltage single positive-edge triggered D-type flip-flop with individual data (D), clock (CP), set ($\overline{\mathrm{SD}}$) and reset ($\overline{\mathrm{R} D}$) inputs and complementary Q and $\overline{\mathrm{Q}}$ outputs. The $\overline{\mathrm{S}} \mathrm{D}$ and $\overline{\mathrm{R}} \mathrm{D}$ are asynchronous active LOW inputs and operate independently of the clock input. Information on the data input is transferred to the Q output on the LOW-to-HIGH transition of the clock pulse. The D input must be stable one set-up time prior to the LOW-to-HIGH clock transition for predictable operation.

Schmitt trigger action at all inputs makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V .

This device ensures a very low static and dynamic power consumption across the entire V_{CC} range from 0.8 V to 3.6 V .

This device is fully specified for partial power-down applications using loff. The loff circuitry disables the output, preventing the damaging backflow current through the device when it is powered down.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
- JESD8-12 (0.8 V to 1.3 V)
- JESD8-11 (0.9 V to 1.65 V)
- JESD8-7 (1.2 V to 1.95 V)
- JESD8-5 (1.8 V to 2.7 V)
- JESD8-B (2.7 V to 3.6 V)
- ESD protection:
- HBM JESD22-A114F Class 3A exceeds 5000 V
- MM JESD22-A115-A exceeds 200 V
- CDM JESD22-C101E exceeds 1000 V
- Low static power consumption; $\mathrm{I}_{\mathrm{CC}}=0.9 \mu \mathrm{~A}$ (maximum)
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10% of V_{CC}
- loff circuitry provides partial power-down mode operation
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$

Low-power D-type flip-flop with set and reset; positive-edge trigger

3. Ordering information

Table 1. Ordering information

| Type number | Package | | | Version |
| :--- | :--- | :--- | :--- | :--- | :--- |
| | Temperature range | Name | Description | SOT765-1 |
| 74AUP1G74DC | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | VSSOP8 | plastic very thin shrink small outline package; 8 leads;
 body width 2.3 mm | SOT833-1 |
| 74AUP1G74GT | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON8 | plastic extremely thin small outline package; no leads;
 8 terminals; body $1 \times 1.95 \times 0.5 \mathrm{~mm}$ | SOT1089 |
| 74AUP1G74GF | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON8 | extremely thin small outline package; no leads;
 8 terminals; body $1.35 \times 1 \times 0.5 \mathrm{~mm}$ | SOT996-2 |
| 74AUP1G74GD | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON8 | plastic extremely thin small outline package; no leads;
 8 terminals; body $3 \times 2 \times 0.5 \mathrm{~mm}$ | SOT902-2 |
| 74AUP1G74GM | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XQFN8 | plastic, extremely thin quad flat package; no leads;
 8 terminals; body $1.6 \times 1.6 \times 0.5$ mm | SOT1116 |
| 74AUP1G74GN | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON8 | extremely thin small outline package; no leads;
 8 8 terminals; body $1.2 \times 1.0 \times 0.35 \mathrm{~mm}$ | SOT1203 |
| 74AUP1G74GS | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | XSON8 | extremely thin small outline package; no leads;
 8 8 terminals; body $1.35 \times 1.0 \times 0.35 \mathrm{~mm}$ | SOT1233 |

[1] Type number 74AUP1G74GX is in development.

4. Marking

Table 2. Marking codes

Type number	Marking code[1]
74AUP1G74DC	p 74
74AUP1G74GT	p 74
74AUP1G74GF	54
74AUP1G74GD	p 74
74AUP1G74GM	p 74
74AUP1G74GN	54
74AUP1G74GS	54
74AUP1G74GX	54

[^0]
5. Functional diagram

Fig 1. Logic symbol

Fig 2. IEC logic symbol

Fig 3. Logic diagram

6. Pinning information

6.1 Pinning

Fig 7. Pin configuration SOT902-2

74AUP1G74

Fig 8. Pin configuration SOT1233

Low-power D-type flip-flop with set and reset; positive-edge trigger

6.2 Pin description

Table 3. Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- | :--- |
| | SOT765-1, SOT833-1, SOT1089, SOT996-2,
 SOT1116, SOT1203 and SOT1233 | SOT902-2 |n

7. Functional description

Table 4. Function table for asynchronous operation[1]

Input					
$\overline{\text { SD }}$	$\overline{\mathbf{R}} \mathbf{D}$	CP	D	Output	
L	H	X	X	Q	H
H	L	X	X	L	
L	L	X	X	H	H

[1] $H=$ HIGH voltage level; $L=$ LOW voltage level; $X=$ don't care.

Table 5. Function table for synchronous operation[1]

Input				Output	
SD	RD	CP	D	$\mathbf{Q}_{\mathrm{n}+1}$	$\overline{\mathbf{Q}}_{\mathbf{n}+1}$
H	H	\uparrow	L	L	H
H	H	\uparrow	H	H	L

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{L}=$ LOW voltage level;
X = don't care;
$\uparrow=$ LOW-to-HIGH CP transition;
$\mathrm{Q}_{\mathrm{n}+1}=$ state after the next LOW-to-HIGH CP transition.

Low-power D-type flip-flop with set and reset; positive-edge trigger

8. Limiting values

Table 6. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$\mathrm{V}_{\text {CC }}$	supply voltage		-0.5	+4.6	V
I_{IK}	input clamping current	$\mathrm{V}_{1}<0 \mathrm{~V}$	-50	-	mA
V	input voltage	[1]	-0.5	+4.6	V
lok	output clamping current	$\mathrm{V}_{\mathrm{O}}<0 \mathrm{~V}$	-50	-	mA
V_{0}	output voltage	Active mode and Power-down mode [1]	-0.5	+4.6	V
Io	output current	$\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to V_{CC}	-	± 20	mA
ICC	supply current		-	+50	mA
IGND	ground current		-50	-	mA
$\mathrm{T}_{\text {stg }}$	storage temperature		-65	+150	${ }^{\circ} \mathrm{C}$
$\mathrm{P}_{\text {tot }}$	total power dissipation	$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C} \quad$ [2]	-	250	mW

[1] The minimum input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For VSSOP8 packages: above $110^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly with $8.0 \mathrm{~mW} / \mathrm{K}$.
For XSON8 and XQFN8 packages: above $118^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $7.8 \mathrm{~mW} / \mathrm{K}$.
For X2SON8 package: above $118^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly with $7.7 \mathrm{~mW} / \mathrm{K}$.

9. Recommended operating conditions

Table 7. Operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	supply voltage		0.8	3.6	V
$\mathrm{~V}_{\mathrm{I}}$	input voltage		0	3.6	V
$\mathrm{~V}_{\mathrm{O}}$	output voltage	Active mode	0	$\mathrm{~V}_{\mathrm{CC}}$	V
		Power-down mode; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	0	3.6	V
$\mathrm{~T}_{\mathrm{amb}}$	ambient temperature		-40	+125	${ }^{\circ} \mathrm{C}$
$\Delta \mathrm{t} / \Delta \mathrm{V}$	input transition rise and fall rate	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	200	$\mathrm{~ns} / \mathrm{V}$

Low-power D-type flip-flop with set and reset; positive-edge trigger

10. Static characteristics

Table 8. Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	$0.65 \times \mathrm{V}_{\text {CC }}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
VIL	LOW-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-	$0.30 \times V_{\text {cc }}$	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times V_{\text {CC }}$	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{C C}-0.1$	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	$0.75 \times \mathrm{V}_{\text {CC }}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	1.11	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{C C}=1.65 \mathrm{~V}$	1.32	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	2.05	-	-	V
		$\mathrm{l}_{0}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.9	-	-	V
		$\mathrm{l}_{0}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.72	-	-	V
		$\mathrm{l}_{0}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.6	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.1	V
		$\mathrm{l}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	-	-	$0.3 \times V_{C C}$	V
		$\mathrm{I}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.44	V
		$\mathrm{I}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.31	V
		$\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.44	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.1	$\mu \mathrm{A}$
loff	power-off leakage current	V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.2	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.2	$\mu \mathrm{A}$
Icc	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.5	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\mathrm{CC}}$	additional supply current	$\begin{aligned} & \mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \text { per pin } \end{aligned}$	-	-	40	$\mu \mathrm{A}$
C_{1}	input capacitance	$\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ or V_{CC}	-	0.6	-	pF
C_{0}	output capacitance	$\mathrm{V}_{\mathrm{O}}=\mathrm{GND} ; \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	1.3	-	pF

Low-power D-type flip-flop with set and reset; positive-edge trigger

Table 8. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$0.70 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{V}_{\text {CC }}=0.9 \mathrm{~V}$ to 1.95 V	$0.65 \times V_{C C}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	-	$0.30 \times V_{C C}$	V
		$\mathrm{V}_{C C}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.35 \times V_{C C}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{C C}-0.1$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	$0.7 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	1.03	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.30	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.97	-	-	V
		$\mathrm{l}_{0}=-3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.85	-	-	V
		$\mathrm{I}_{\mathrm{O}}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.67	-	-	V
		$\mathrm{l}_{0}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.55	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.1	V
		$\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	-	-	$0.3 \times V_{C C}$	V
		$\mathrm{l}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.37	V
		$\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.35	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	-	-	0.33	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.45	V
		$\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.33	V
		$\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.45	V
1	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.5	$\mu \mathrm{A}$
loff	power-off leakage current	V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.5	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \text {; } \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.6	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	0.9	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {CC }}$	additional supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} ; \text { per pin } \end{aligned}$	-	-	50	$\mu \mathrm{A}$

Low-power D-type flip-flop with set and reset; positive-edge trigger

Table 8. Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Typ	Max	Unit
$\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to +125 ${ }^{\circ} \mathrm{C}$						
V_{IH}	HIGH-level input voltage	$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	$0.75 \times \mathrm{V}_{\mathrm{cc}}$	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	$0.70 \times V_{\text {cc }}$	-	-	V
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.6	-	-	V
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.0	-	-	V
$\mathrm{V}_{\text {IL }}$	LOW-level input voltage	$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	-	$0.25 \times V_{C C}$	V
		$\mathrm{V}_{\mathrm{CC}}=0.9 \mathrm{~V}$ to 1.95 V	-	-	$0.30 \times V_{C C}$	V
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-	0.7	V
		$\mathrm{V}_{\text {CC }}=3.0 \mathrm{~V}$ to 3.6 V	-	-	0.9	V
V_{OH}	HIGH-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$				
		$\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	$\mathrm{V}_{\mathrm{CC}}-0.11$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	$0.6 \times \mathrm{V}_{\mathrm{CC}}$	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	0.93	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	1.17	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	1.77	-	-	V
		$\mathrm{l}_{0}=-3.1 \mathrm{~mA} ; \mathrm{V}_{C C}=2.3 \mathrm{~V}$	1.67	-	-	V
		$\mathrm{l}_{0}=-2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.40	-	-	V
		$\mathrm{l}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	2.30	-	-	V
V_{OL}	LOW-level output voltage	$\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or V_{IL}				
		$\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$ to 3.6 V	-	-	0.11	V
		$\mathrm{I}_{\mathrm{O}}=1.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$	-	-	$0.33 \times \mathrm{V}_{\mathrm{CC}}$	V
		$\mathrm{I}_{\mathrm{O}}=1.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$	-	-	0.41	V
		$\mathrm{I}_{\mathrm{O}}=1.9 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$	-	-	0.39	V
		$\mathrm{l}_{\mathrm{O}}=2.3 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.36	V
		$\mathrm{l}_{\mathrm{O}}=3.1 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$	-	-	0.50	V
		$\mathrm{l}_{\mathrm{O}}=2.7 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.36	V
		$\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$	-	-	0.50	V
$1 /$	input leakage current	$\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to 3.6 V , $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ to 3.6 V	-	-	± 0.75	$\mu \mathrm{A}$
lofF	power-off leakage current	V_{1} or $\mathrm{V}_{\mathrm{O}}=0 \mathrm{~V}$ to 3.6 V ; $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$	-	-	± 0.75	$\mu \mathrm{A}$
$\Delta \mathrm{l}_{\text {OFF }}$	additional power-off leakage current	$\begin{aligned} & \mathrm{V}_{1} \text { or } \mathrm{V}_{\mathrm{O}}=0 \mathrm{~V} \text { to } 3.6 \mathrm{~V} ; \\ & \mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V} \text { to } 0.2 \mathrm{~V} \end{aligned}$	-	-	± 0.75	$\mu \mathrm{A}$
ICC	supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { or } \mathrm{V}_{\mathrm{CC}} ; \mathrm{l}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V} \text { to } 3.6 \mathrm{~V} \end{aligned}$	-	-	1.4	$\mu \mathrm{A}$
$\Delta l_{\text {CC }}$	additional supply current	$\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=3.3 \mathrm{~V} \text {; per pin } \end{aligned}$	-	-	75	$\mu \mathrm{A}$

[1] One input at $\mathrm{V}_{\mathrm{CC}}-0.6 \mathrm{~V}$, other input at V_{CC} or GND .

Low-power D-type flip-flop with set and reset; positive-edge trigger

11. Dynamic characteristics

Table 9. Dynamic characteristics
Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 11.

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				Unit
			Min	Typ[1]	Max	Min	$\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \operatorname{Max} \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}$										
t_{pd}	propagation delay	CP to Q, $\overline{\mathrm{Q}}$; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	25.4	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	2.9	6.7	14.0	2.6	14.2	2.6	14.2	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.4	4.5	7.6	2.3	8.3	2.3	8.6	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	1.9	3.5	5.7	1.7	6.5	1.7	6.8	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.7	2.6	3.8	1.4	4.4	1.4	4.7	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.5	2.2	3.1	1.2	3.4	1.2	3.7	ns
		$\bar{S} D$ to $Q, \bar{Q} ;$ see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	19.6	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.7	5.6	11.0	2.5	11.4	2.5	11.5	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.4	4.0	6.3	2.2	6.9	2.2	7.3	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	2.0	3.3	4.9	1.7	5.6	1.7	5.9	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	1.9	2.7	3.7	1.7	4.0	1.7	4.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.8	2.5	3.2	1.5	3.6	1.5	3.8	ns
		$\overline{\mathrm{R}} \mathrm{D}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	19.2	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.6	5.5	11.0	2.5	11.3	2.5	11.5	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	2.3	3.9	6.3	2.2	6.8	2.2	7.3	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	1.9	3.2	5.0	1.8	5.6	1.8	5.9	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	1.9	2.6	3.6	1.7	4.1	1.7	4.3	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.8	2.4	3.3	1.5	3.6	1.5	3.8	ns
$f_{\max }$	maximum frequency	CP; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	53	-	-	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	203	-	170	-	170	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	347	-	310	-	300	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	435	-	400	-	390	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	550	-	490	-	480	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	619	-	550	-	510	-	MHz

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 11.

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\mathrm{L}}=10 \mathrm{pF}$										
t_{pd}	propagation delay	CP to Q, $\overline{\mathrm{Q}}$; see Figure 9								
		$\mathrm{V}_{C C}=0.8 \mathrm{~V}$	-	28.9	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	3.1	7.5	15.8	2.9	16.1	2.9	16.1	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.7	5.1	8.7	2.4	9.4	2.4	9.8	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.5	4.1	6.5	2.2	7.2	2.2	7.6	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.0	3.2	4.6	1.8	5.3	1.8	5.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	1.8	2.8	3.8	1.6	4.1	1.6	4.4	ns
		$\bar{S} D$ to Q, \bar{Q}; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	23.2	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	2.9	6.5	12.9	2.8	13.3	2.8	13.5	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.7	4.6	7.5	2.3	7.9	2.3	8.3	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.6	3.9	5.6	2.3	6.3	2.3	6.6	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	2.3	3.2	4.4	2.0	4.8	2.0	5.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.2	3.0	3.9	1.9	4.2	1.9	4.4	ns
		$\overline{\mathrm{R}} \mathrm{D}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$; see Figure 10								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	22.7	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	2.8	6.4	12.8	2.7	13.2	2.7	13.4	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	2.6	4.5	7.5	2.3	8.1	2.3	8.4	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.5	3.3	5.8	2.3	6.3	2.3	6.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.2	3.2	4.4	2.0	4.9	2.0	5.2	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	2.0	2.9	4.0	1.9	4.3	1.9	4.5	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	CP; see Figure 9								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	52	-	-	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	192	-	150	-	150	-	MHz
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	324	-	280	-	230	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	421	-	310	-	250	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	486	-	370	-	360	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	550	-	410	-	360	-	MHz

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 11.

Symbol	Parameter	Conditions	$\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \operatorname{Max} \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$										
t_{pd}	propagation delay	CP to Q, $\overline{\mathrm{Q}}$; see Figure 9								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	32.4	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	3.5	8.3	17.6	3.3	17.8	3.3	18.0	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	3.2	5.6	9.5	2.8	10.5	2.8	11.1	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.7	4.6	7.2	2.5	8.1	2.5	8.6	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.4	3.6	5.2	2.2	5.8	2.2	6.2	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.2	3.2	4.4	2.0	4.9	2.0	5.2	ns
		$\bar{S} D$ to Q, \bar{Q}; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	26.7	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.3	7.3	14.7	3.1	15.2	3.1	15.4	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.2	5.2	8.3	2.9	9.0	2.9	9.5	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.8	4.3	6.4	2.5	7.1	2.5	7.5	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	2.8	3.7	5.1	2.2	5.5	2.2	5.8	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	2.5	3.5	4.6	2.4	5.0	2.4	5.2	ns
		$\overline{\mathrm{R}} \mathrm{D}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	26.1	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	3.2	7.2	14.5	3.1	15.0	3.1	15.2	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.1	5.1	8.4	2.7	9.2	2.7	9.7	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	2.7	4.3	6.5	2.6	7.3	2.6	7.7	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	2.6	3.6	5.0	2.4	5.5	2.4	5.8	ns
		$\mathrm{V}_{C C}=3.0 \mathrm{~V}$ to 3.6 V	2.4	3.4	4.6	2.3	5.0	2.3	5.2	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	CP; see Figure 9								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	50	-	-	-	-	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	181	-	120	-	120	-	MHz
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	301	-	190	-	160	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	407	-	240	-	190	-	MHz
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	422	-	300	-	270	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	481	-	320	-	300	-	MHz

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 11.

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \text { Max } \\ \left(125{ }^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\mathrm{L}}=30 \mathrm{pF}$										
t_{pd}	propagation delay	CP to Q, $\overline{\mathrm{Q}}$; see Figure 9								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	42.7	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	4.2	10.6	22.5	4.0	23.0	4.0	23.3	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.7	7.2	12.0	3.7	13.3	3.7	14.0	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.5	5.8	9.2	3.4	10.4	3.4	11.0	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.3	4.7	6.6	3.0	7.3	3.0	7.8	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.0	4.3	5.8	2.8	6.8	2.8	7.3	ns
		$\bar{S} D$ to Q, \bar{Q}; see Figure 10								
		$\mathrm{V}_{\text {CC }}=0.8 \mathrm{~V}$	-	37.0	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	4.0	9.5	19.8	3.8	20.8	3.8	21.1	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	3.8	6.7	10.9	3.7	12.0	3.7	12.7	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.7	5.6	8.4	3.5	9.3	3.5	9.9	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.7	4.8	6.6	3.2	7.2	3.2	7.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.4	4.6	6.0	3.1	6.8	3.1	7.1	ns
		$\overline{\mathrm{R}} \mathrm{D}$ to $\mathrm{Q}, \overline{\mathrm{Q}}$; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	36.4	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	3.9	9.4	19.5	3.8	20.2	3.8	20.5	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	3.6	6.6	10.9	3.7	12.0	3.7	12.6	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	3.5	5.5	8.5	3.5	9.5	3.5	10.1	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	3.5	4.7	6.5	3.2	7.1	3.2	7.6	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	3.3	4.4	6.1	3.1	7.1	3.1	7.5	ns
$\mathrm{f}_{\text {max }}$	maximum frequency	CP; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	28	-	-	-	-	-	MHz
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	145	-	70	-	70	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	185	-	120	-	110	-	MHz
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	270	-	150	-	120	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	290	-	190	-	170	-	MHz
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	315	-	200	-	190	-	MHz

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 11.

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$				Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
$\mathrm{C}_{\mathrm{L}}=5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}$ and 30 pF										
$\mathrm{t}_{\text {su }}$	set-up time	D to CP HIGH; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	3.4	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	0.6	-	1.2	-	1.2	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	0.3	-	0.6	-	0.6	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	0.4	-	0.5	-	0.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	0.2	-	0.4	-	0.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.3	-	0.4	-	0.4	-	ns
		D to CP LOW; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	3.0	-	-	-	-	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	0.5	-	1.2	-	1.2	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	0.3	-	0.7	-	0.7	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	0.4	-	0.7	-	0.7	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	0.5	-	0.7	-	0.7	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.6	-	0.8	-	0.8	-	ns
$t_{\text {h }}$	hold time	D to CP; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	-1.9	-	-	-	-	-	ns
		$\mathrm{V}_{C C}=1.1 \mathrm{~V}$ to 1.3 V	-	-0.3	-	0.5	-	0.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	-0.2	-	0.2	-	0.2	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-0.2	-	0.1	-	0.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	-0.2	-	0.1	-	0.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-0.2	-	0.1	-	0.1	-	ns
$\mathrm{t}_{\text {rec }}$	recovery time	$\overline{\mathrm{R}}$; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	-0.5	-	-0.9	-	-0.9	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	-0.2	-	-0.6	-	-0.6	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	-0.2	-	-0.4	-	-0.4	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-0.1	-	-0.1	-	-0.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-0.1	-	-0.1	-	-0.1	-	ns
		$\overline{\text { SD; see Figure } 10}$								
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	-0.5	-	-0.3	-	-0.3	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	-0.4	-	-0.1	-	-0.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	-0.3	-	0	-	0	-	ns
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	-0.2	-	0.1	-	0.1	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	-0.1	-	0.1	-	0.1	-	ns

Table 9. Dynamic characteristics ...continued
Voltages are referenced to GND (ground $=0 \mathrm{~V}$); for test circuit see Figure 11 .

Symbol	Parameter	Conditions	$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$			$\mathrm{T}_{\mathrm{amb}}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$				Unit
			Min	Typ ${ }^{[1]}$	Max	Min	$\begin{gathered} \text { Max } \\ \left(85^{\circ} \mathrm{C}\right) \end{gathered}$	Min	$\begin{gathered} \text { Max } \\ \left(125^{\circ} \mathrm{C}\right) \end{gathered}$	
tw	pulse width	CP HIGH or LOW; see Figure 9								
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	2.1	-	2.7	-	2.7	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	1.1	-	1.5	-	1.5	-	ns
		$\mathrm{V}_{C C}=1.65 \mathrm{~V}$ to 1.95 V	-	0.9	-	1.6	-	1.6	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	0.6	-	1.7	-	1.7	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	0.6	-	1.9	-	1.9	-	ns
		$\bar{S} D$ or $\bar{R} D$ LOW; see Figure 10								
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	4.2	-	11.3	-	11.5	-	ns
		$\mathrm{V}_{C C}=1.4 \mathrm{~V}$ to 1.6 V	-	2.3	-	6.2	-	6.4	-	ns
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	1.8	-	4.8	-	5.0	-	ns
		$\mathrm{V}_{\mathrm{CC}}=2.3 \mathrm{~V}$ to 2.7 V	-	1.2	-	3.3	-	3.5	-	ns
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	1.1	-	2.6	-	2.8	-	ns
$\mathrm{C}_{\text {PD }}$	power dissipation capacitance	$\begin{aligned} & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} ; \\ & \mathrm{V}_{\mathrm{I}}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \end{aligned}$								
		$\mathrm{V}_{\mathrm{CC}}=0.8 \mathrm{~V}$	-	2.8	-	-	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=1.1 \mathrm{~V}$ to 1.3 V	-	2.9	-	-	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=1.4 \mathrm{~V}$ to 1.6 V	-	3.0	-	-	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=1.65 \mathrm{~V}$ to 1.95 V	-	3.0	-	-	-	-	-	pF
		$\mathrm{V}_{C C}=2.3 \mathrm{~V}$ to 2.7 V	-	3.5	-	-	-	-	-	pF
		$\mathrm{V}_{\mathrm{CC}}=3.0 \mathrm{~V}$ to 3.6 V	-	3.9	-	-	-	-	-	pF

[1] All typical values are measured at nominal V_{CC}.
[2] $t_{p d}$ is the same as $t_{\text {PLH }}$ and $t_{\text {PHL }}$.
[3] $C_{P D}$ is used to determine the dynamic power dissipation (P_{D} in $\left.\mu W\right)$.
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$f_{i}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$N=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.

12. Waveforms

Measurement points are given in Table 10.
The shaded areas indicate when the input is permitted to change for predictable output performance.
V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 9. The clock input (CP) to output (Q, \bar{Q}) propagation delays, the data input (D) to clock input (CP) set-up and hold times and the clock input (CP) pulse width and maximum frequency

Table 10. Measurement points

Supply voltage	Output	Input		
$\mathbf{V}_{\mathbf{C C}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{M}}$	$\mathbf{V}_{\mathbf{I}}$	$\mathbf{t}_{\mathbf{r}}=\mathbf{t}_{\mathbf{f}}$
0.8 V to 3.6 V	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	$0.5 \times \mathrm{V}_{\mathrm{CC}}$	V_{CC}	$\leq 3.0 \mathrm{~ns}$

Measurement points are given in Table 10.
V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.
Fig 10. The set input ($\overline{\mathrm{S}} \mathrm{D}$) and reset input $(\overline{\mathrm{R}} \mathrm{D}$) to output ($\mathrm{Q}, \overline{\mathrm{Q}}$) propagation delays, the set input ($\overline{\mathrm{S} D}$) and reset input (RD) pulse widths and the reset input (RD) to clock input (CP) recovery time

001aac521

Test data is given in Table 11.
Definitions for test circuit:
$R_{L}=$ Load resistance.
$C_{L}=$ Load capacitance including jig and probe capacitance.
$\mathrm{R}_{\mathrm{T}}=$ Termination resistance should be equal to the output impedance Z_{0} of the pulse generator
$\mathrm{V}_{\mathrm{EXT}}=$ External voltage for measuring switching times.
Fig 11. Test circuit for measuring switching times

Table 11. Test data

Supply voltage	Load	$\mathbf{V}_{\mathbf{E X T}}$			
$\mathbf{V}_{\mathbf{C C}}$	\mathbf{C}_{L}	$\mathbf{R}_{\mathbf{L}}{ }^{[1]}$	$\mathbf{t}_{\mathbf{P L H}}, \mathbf{t}_{\mathbf{P H L}}$	$\mathbf{t}_{\mathbf{P Z H}}, \mathbf{t}_{\mathbf{P H Z}}$	$\mathbf{t}_{\text {PZL }}, \mathbf{t}_{\text {PLZ }}$
0.8 V to 3.6 V	$5 \mathrm{pF}, 10 \mathrm{pF}, 15 \mathrm{pF}$ and 30 pF	$5 \mathrm{k} \Omega$ or $1 \mathrm{M} \Omega$	open	GND	$2 \times \mathrm{V}_{\mathrm{CC}}$

[1] For measuring enable and disable times $R_{L}=5 \mathrm{k} \Omega$ For measuring propagation delays, setup and hold times and pulse width $R_{L}=1 \mathrm{M} \Omega$.

13. Package outline

Dimensions (mm are the original dimensions)

Unit		A max.	A_{1}	A_{2}	A_{3}	b_{p}	C	$D^{(1)}$	$E^{(2)}$	e	H_{E}	L	L_{p}	Q	V	w	y	$\mathbf{Z}^{(1)}$	θ
mm	max		0.15	0.85	0.12	0.27	0.23	2.1	2.4	0.5	3.2	0.4	0.40	0.21	0.2	0.08	0.1	0.4	8°
	nom	1																	
	min		0.00	0.60		0.17	0.08	1.9	2.2		3.0		0.15	0.19				0.1	0°

Note

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included

Outline version	References			European projection	Issue date
	IEC	JEDEC	JEITA		
SOT765-1		MO-187			$\begin{gathered} \hline-07-06-02 \\ 16-05-31 \end{gathered}$

Fig 12. Package outline SOT765-1 (VSSOP8)

DIMENSIONS (mm are the original dimensions)

UNIT	$\mathbf{A}^{(1)}$ $\boldsymbol{m a x}$	$\mathbf{A}_{\mathbf{1}}$ $\boldsymbol{m a x}$	\mathbf{b}	\mathbf{D}	\mathbf{E}	\mathbf{e}	$\mathbf{e}_{\mathbf{1}}$	\mathbf{L}	$\mathbf{L}_{\mathbf{1}}$
mm	0.5	0.04	0.25	2.0	1.05	0.6	0.5	0.35	0.40
			0.17	1.9	0.95			0.27	0.32

Notes

1. Including plating thickness.
2. Can be visible in some manufacturing processes.

OUTLINE VERSION	REFERENCES				EUROPEAN PROJECTION	ISSUE DATE
	IEC	JEDEC	JEITA			

Fig 13. Package outline SOT833-1 (XSON8)

Fig 14. Package outline SOT1089 (XSON8)

Dimensions (mm are the original dimensions)

Unit(1)		A	A_{1}	b	D	E	e	e_{1}	L	L_{1}	L_{2}	v	w	y	y_{1}
mm	max		0.05	0.35	2.1	3.1			0.5	0.15	0.6				
	nom	0.5					0.5	1.5				0.1	0.05	0.05	0.1
	min		0.00	0.15	1.9	2.9			0.3	0.05	0.4				

Outline version	References			European projection	Issue date
	IEC	JEDEC	JEITA		
SOT996-2					$\begin{aligned} & \hline 07-12-21 \\ & 12-11-20 \end{aligned}$

Fig 15. Package outline SOT996-2 (XSON8)

XQFN8: plastic, extremely thin quad flat package; no leads;
8 terminals; body $1.6 \times 1.6 \times 0.5 \mathrm{~mm}$

Fig 16. Package outline SOT902-2 (XQFN8)

Fig 17. Package outline SOT1116 (XSON8)

Fig 18. Package outline SOT1203 (XSON8)

[^0]: [1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

