imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

ne<mark>x</mark>peria

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of <u>http://www.nxp.com</u>, <u>http://www.philips.com/</u> or <u>http://www.semiconductors.philips.com/</u>, use <u>http://www.nexperia.com</u>

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use **salesaddresses@nexperia.com** (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

Low-power X-tal driver with enable and internal resistor; 3-state

Rev. 5 — 8 August 2012

Product data sheet

1. General description

The 74AUP1Z125 combines the functions of the 74AUP1GU04 and 74AUP1G125 with enable circuitry and an internal bias resistor to provide a device optimized for use in crystal oscillator applications.

When not in use the \overline{EN} input can be driven HIGH, pulling up the X1 input and putting the device in a low-power disable mode. Schmitt trigger action at the \overline{EN} input makes the circuit tolerant to slower input rise and fall times across the entire V_{CC} range from 0.8 V to 3.6 V.

This device is fully specified for partial power-down applications using I_{OFF} at output Y. The I_{OFF} circuitry disables the output Y, preventing the damaging backflow current through the device when it is powered down.

The integration of the two devices into the 74AUP1Z125 produces the benefits of a compact footprint, lower power dissipation and stable operation over a wide range of frequency and temperature.

2. Features and benefits

- Wide supply voltage range from 0.8 V to 3.6 V
- High noise immunity
- ESD protection:
 - HBM JESD22-A114F Class 3A exceeds 5000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101E exceeds 1000 V
- Latch-up performance exceeds 100 mA per JESD78B Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial power-down mode operation at output Y
- Multiple package options
- Specified from –40 °C to +85 °C and –40 °C to +125 °C

Low-power X-tal driver with enable and internal resistor; 3-state

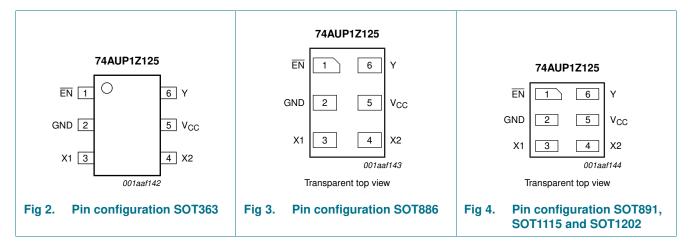
3. Ordering information

Table 1. Ordering	g information			
Type number	Package			
	Temperature range	Name	Description	Version
74AUP1Z125GW	-40 °C to +125 °C	SC-88	plastic surface-mounted package; 6 leads	SOT363
74AUP1Z125GM	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1.45 \times 0.5 mm	SOT886
74AUP1Z125GF	–40 °C to +125 °C	XSON6	plastic extremely thin small outline package; no leads; 6 terminals; body 1 \times 1 \times 0.5 mm	SOT891
74AUP1Z125GN	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $0.9 \times 1.0 \times 0.35$ mm	SOT1115
74AUP1Z125GS	–40 °C to +125 °C	XSON6	extremely thin small outline package; no leads; 6 terminals; body $1.0 \times 1.0 \times 0.35$ mm	SOT1202

4. Marking

Table 2. Marking	
Type number	Marking code ^[1]
74AUP1Z125GW	55
74AUP1Z125GM	55
74AUP1Z125GF	55
74AUP1Z125GN	55
74AUP1Z125GS	55

[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.


5. Functional diagram

Low-power X-tal driver with enable and internal resistor; 3-state

6. Pinning information

6.1 Pinning

6.2 Pin description

Table 3.	Pin description	
Symbol	Pin	Description
EN	1	enable input (active LOW)
GND	2	ground (0 V)
X1	3	data input
X2	4	unbuffered output
V _{CC}	5	supply voltage
Y	6	data output
-		

7. Functional description

Table 4.Function table^[1]

Input Contract of		Output		
EN	X1	X2	Y	
L	L	Н	Н	
L	Н	L	L	
Н	L	Н	Z	
Н	Н	L	Z	

[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Low-power X-tal driver with enable and internal resistor; 3-state

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

V_{CC} supply voltage -0.5 $+4.6$ V I_{IK} input clamping current $V_I < 0$ V -50 $-$ mA V_I input voltage $U_I < 0$ V -50 $+4.6$ V I_{OK} output clamping current $V_O < 0$ V -50 $-$ mA V_O output voltageActive mode and Power-down mode 11 -0.5 $+4.6$ V I_O output voltageActive mode and Power-down mode 11 -0.5 $+4.6$ V I_O output current $V_O = 0$ V to V_{CC} $ \pm20$ mA I_{CC} supply current $ 50$ mA I_{GND} ground current -50 $-$ mA T_{stg} storage temperature -65 $+150$ $^{\circ}C$,
Incinput clamping current $V_1 < 0 V$ -50 $-$ mA V_1 input voltage11 -0.5 $+4.6$ V I_{OK} output clamping current $V_O < 0 V$ -50 $-$ mA V_O output voltageActive mode and Power-down mode11 -0.5 $+4.6$ V I_O output voltageActive mode and Power-down mode11 -0.5 $+4.6$ V I_O output current $V_O = 0 V to V_{CC}$ $ \pm 20$ mA I_{CC} supply current $ 50$ $-$ mA I_{GND} ground current -50 $-$ mA I_{Tstg} storage temperature -65 $+150$ $^{\circ}C$	Symbol	Parameter	Conditions	Min	Max	Unit
VIinput voltage11 -0.5 $+4.6$ VIOKoutput clamping currentVo < 0 V	V _{CC}	supply voltage		-0.5	+4.6	V
NormN	l _{IK}	input clamping current	V _I < 0 V	-50	-	mA
Wooutput voltageActive mode and Power-down mode11 -0.5 $+4.6$ VIooutput currentVo = 0 V to Vcc- ± 20 mAIccsupply current-50mAIgNDground current-50-mATstgstorage temperature-65 $+150$ °C	VI	input voltage		<u>[1]</u> –0.5	+4.6	V
$V_O = 0 V \text{ to } V_{CC}$ - ± 20 mA l_{CC} supply current-50mA l_{GND} ground current-50-mA T_{stg} storage temperature-65+150°C	I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
I_{CC} supply current-50mA I_{GND} ground current-50-mA T_{stg} storage temperature-65+150°C	Vo	output voltage	Active mode and Power-down mode	<u>[1]</u> –0.5	+4.6	V
Image: description of the product	lo	output current	$V_{O} = 0 V$ to V_{CC}	-	±20	mA
T_{stg} storage temperature -65 +150 °C	I _{CC}	supply current		-	50	mA
	I _{GND}	ground current		-50	-	mA
P_{tot} total power dissipation $T_{amb} = -40 \text{ °C to } +125 \text{ °C}$ [2] - 250 mW	T _{stg}	storage temperature		-65	+150	°C
	P _{tot}	total power dissipation	$T_{amb} = -40 \ ^{\circ}C \ to \ +125 \ ^{\circ}C$	[2] _	250	mW

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.

[2] For SC-88 packages: above 87.5 °C the value of Ptot derates linearly with 4.0 mW/K.

For XSON6 packages: above 118 °C the value of Ptot derates linearly with 7.8 mW/K.

9. Recommended operating conditions

Table 6.	Recommended operating condition	0115			
Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC}	supply voltage		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage		0	V_{CC}	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t / \Delta V$	input transition rise and fall rate	$V_{CC} = 0.8 V \text{ to } 3.6 V$	-	200	ns/V

Table 6. Recommended operating conditions

Low-power X-tal driver with enable and internal resistor; 3-state

10. Static characteristics

Table 7. Static characteristics

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Γ _{amb} = 2	5 °C					
/ _{IH}	HIGH-level input voltage	X1 input				
		$V_{CC} = 0.8 V$ to 3.6 V	$0.75 \times V_{CC}$	-	-	V
		EN input				
		$V_{CC} = 0.8 V$	$0.70 \times V_{\text{CC}}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
'IL	LOW-level input voltage	X1 input				
		$V_{CC} = 0.8 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	$0.25 \times V_{CC}$	V
		EN input				
		$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	٧
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	-	-	0.7	٧
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	٧
V _{OH}	HIGH-level output voltage	Y output; V_I at X1 input = V_{IH} or V_{IL}				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	٧
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.75 \times V_{CC}$	-	-	٧
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	٧
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	٧
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	٧
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.6	-	-	V
		X2 output; $V_I = GND$ or V_{CC}				
		$I_O = -20 \ \mu\text{A}; \ V_{CC} = 0.8 \ \text{V} \ \text{to} \ 3.6 \ \text{V}$	$V_{CC} - 0.1$	-	-	V
		I _O = -1.1 mA; V _{CC} = 1.1 V	$0.75 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.11	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.32	-	-	۷
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	2.05	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.9	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.72	-	-	V
		$I_{\rm O} = -4.0 \text{ mA}; V_{\rm CC} = 3.0 \text{ V}$	2.6	-	_	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V _{OL}	LOW-level output voltage	Y output; V _I at X1 input = V _{IH} or V _{IL}				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 \times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
		X2 output; $V_1 = GND$ or V_{CC}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.1	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.3 imes V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.31	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.31	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.31	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.44	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.31	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.44	V
l _l	input leakage current	X1 input				
		$V_{I} = \overline{EN} = V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.1	μA
		EN input				
		$V_I = GND$ to 3.6 V;	-	-	±0.1	μA
		$V_{CC} = 0$ V to 3.6 V				
pu	pull-up current	X1 input; $EN = V_{CC}$				
		$V_I = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μA
OZ	OFF-state output current	Y output; $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V; $\overline{EN} = V_{CC}$	-	-	±0.1	μA
OFF	power-off leakage current	V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC} = 0$ V	<u>[1]</u> -	-	±0.2	μA
∆I _{OFF}	additional power-off leakage current	$V_1 \text{ or } V_0 = 0 \text{ V to } 3.6 \text{ V};$ $V_{CC} = 0 \text{ V to } 0.2 \text{ V}$	[1] -	-	±0.2	μA
СС	supply current	$V_{I} = GND \text{ or } V_{CC}; I_{O} = 0 \text{ A};$ $V_{CC} = 0.8 \text{ V to } 3.6 \text{ V}$	-	-	75	μA
VICC	additional supply current	EN input				
00		$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	40	μA
C _I	input capacitance	X1 input				
ı		$V_{CC} = 0 V \text{ to } 3.6 V;$ $V_{I} = \text{GND or } V_{CC}$	-	1.3	-	pF
		EN input				
		$V_{CC} = 0 \text{ V to 3.6 V;}$ $V_{I} = \text{GND or } V_{CC}$	-	0.8	-	pF

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
Co	output capacitance	X2 output				
		$V_O = GND; V_{CC} = 0 V$	-	1.5	-	pF
		Y output				
		$V_O = GND; V_{CC} = 0 V$	-	1.7	-	pF
9 _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		V _{CC} = 1.1 V to 1.3 V	0.2	-	9.9	mA/V
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	3.9	-	17.7	mA/V
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V	7.9	-	24.3	mA/V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	18	-	30.7	mA/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	20.5	-	32.4	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_1 = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.08	1.62	3.08	MΩ
T _{amb} = ⊸	40 °C to +85 °C					
VIH	HIGH-level input voltage	X1 input				
		$V_{CC} = 0.8 V$ to 3.6 V	$0.75 \times V_{CC}$	-	-	V
		EN input				
		$V_{CC} = 0.8 V$	$0.70\times V_{CC}$	-	-	V
		$V_{CC} = 0.9 \text{ V}$ to 1.95 V	$0.65 \times V_{CC}$	-	-	V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
VIL	LOW-level input voltage	X1 input				
		$V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	$0.25 \times V_{CC}$	V
		EN input				
		$V_{CC} = 0.8 V$	-	-	$0.30 \times V_{CC}$	V
		$V_{CC} = 0.9 V$ to 1.95 V	-	-	$0.35 \times V_{CC}$	V
		V_{CC} = 2.3 V to 2.7 V	-	-	0.7	V
		V_{CC} = 3.0 V to 3.6 V	-	-	0.9	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
/ _{ОН}	HIGH-level output voltage	Y output; V _I at X1 input = V _{IH} or V _{IL}				
		I_O = $-20~\mu\text{A};~V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$ 1.30	-	V		
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
		X2 output; $V_I = GND$ or V_{CC}				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.1$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.7\times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	1.03	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.30	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.97	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.85	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.67	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.55	-	-	V
/ _{OL}	LOW-level output voltage	Y output; V_I at X1 input = V_{IH} or V_{IL}				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3\times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	V
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	V
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.33	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V
		X2 output; $V_I = GND$ or V_{CC}				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.1	V
		$I_{O} = 1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	-	-	$0.3\times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.37	V
		$I_{O} = 1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	-	-	0.35	V
		I_{O} = 2.3 mA; V_{CC} = 2.3 V	-	-	0.33	۷
		$I_{O} = 3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.45	۷
		I_{O} = 2.7 mA; V_{CC} = 3.0 V	-	-	0.33	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.45	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
li -	input leakage current	X1 input				
		$V_I = \overline{EN} = V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.5	μA
		EN input				
		V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.5	μA
l _{pu}	pull-up current	X1 input; $\overline{EN} = V_{CC}$				
		$V_1 = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μA
l _{oz}	OFF-state output current	Y output; V _O = 0 V to 3.6 V; V _{CC} = 0 V to 3.6 V; V_{CC} = 0 V to 3.6 V; \overline{EN} = V _{CC}	-	-	±0.5	μA
I _{OFF}	power-off leakage current	V_I or $V_O = 0$ V to 3.6 V; $V_{CC} = 0$ V	<u>[1]</u> -	-	±0.5	μA
ΔI_{OFF}	additional power-off leakage current		[1] -	-	±0.6	μA
I _{CC}	supply current	$\label{eq:VI} \begin{array}{l} V_{I} = GND \text{ or } V_{CC}; \ I_{O} = 0 \ A; \\ V_{CC} = 0.8 \ V \text{ to } 3.6 \ V \end{array}$	-	-	75	μA
ΔI_{CC}	additional supply current	EN input				
			-	-	50	μA
g _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		$V_{CC} = 1.1 V \text{ to } 1.3 V$	-	-	10.8	mA/V
		$V_{CC} = 1.4 \text{ V}$ to 1.6 V	1.8	-	21.2	mA/V
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V	7.5	-	29.9	mA/V
		V_{CC} = 2.3 V to 2.7 V	15.0	-	38.0	mA/V
		$V_{CC} = 3.0 V \text{ to } 3.6 V$	17.8	-	39.2	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_I = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.07	-	3.11	MΩ

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
Γ _{amb} = -	-40 °C to +125 °C					
V _{IH} HIGH-level input voltage		X1 input				
		$V_{CC} = 0.8 V$ to 3.6 V	$0.75 \times V_{CC}$	-	-	V
		EN input				
		$V_{CC} = 0.8 V$	$0.75 \times V_{CC}$	-	-	V
		$V_{CC} = 0.9 V$ to 1.95 V	$0.70 \times V_{\text{CC}}$	-	-	V
		V_{CC} = 2.3 V to 2.7 V	1.6	-	-	V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	-	-	V
′ _{IL}	LOW-level input voltage	X1 input				
	$V_{CC} = 0.8 V$ to 3.6 V	-	-	$0.25 \times V_{CC}$	V	
		EN input				
		$V_{CC} = 0.8 V$	-	-	$0.25 \times V_{CC}$	V
		V _{CC} = 0.9 V to 1.95 V	-	-	$0.30\times V_{CC}$	۷
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	-	-	0.7	۷
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	-	-	0.9	V
′он	HIGH-level output voltage	Y output; V_I at X1 input = V_{IH} or V_{IL}				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.11$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	۷
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	۷
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	۷
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	۷
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	۷
		X2 output; $V_I = GND$ or V_{CC}				
		I_O = –20 $\mu\text{A};V_{CC}$ = 0.8 V to 3.6 V	$V_{CC}-0.11$	-	-	V
		$I_{O} = -1.1 \text{ mA}; V_{CC} = 1.1 \text{ V}$	$0.6 \times V_{CC}$	-	-	V
		$I_{O} = -1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	0.93	-	-	V
		$I_{O} = -1.9 \text{ mA}; V_{CC} = 1.65 \text{ V}$	1.17	-	-	V
		$I_{O} = -2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.77	-	-	V
		$I_{O} = -3.1 \text{ mA}; V_{CC} = 2.3 \text{ V}$	1.67	-	-	V
		$I_{O} = -2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.40	-	-	V
		$I_{O} = -4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	2.30	-	-	V

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

Symbol	Parameter	Conditions	Min	Тур	Max	Uni
V _{OL}	LOW-level output voltage	Y output; $V_I = V_{IH}$ or V_{IL}				
		I_O = 20 $\mu A;V_{CC}$ = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		$I_{O} = 1.7 \text{ mA}; V_{CC} = 1.4 \text{ V}$	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		$I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
		X2 output; $V_I = GND$ or V_{CC}				
		I_{O} = 20 μ A; V_{CC} = 0.8 V to 3.6 V	-	-	0.11	V
		I _O = 1.1 mA; V _{CC} = 1.1 V	-	-	$0.33 \times V_{CC}$	V
		I _O = 1.7 mA; V _{CC} = 1.4 V	-	-	0.41	V
		I _O = 1.9 mA; V _{CC} = 1.65 V	-	-	0.39	V
		$I_{O} = 2.3 \text{ mA}; V_{CC} = 2.3 \text{ V}$	-	-	0.36	V
		I _O = 3.1 mA; V _{CC} = 2.3 V	-	-	0.50	V
		$I_{O} = 2.7 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.36	V
		$I_{O} = 4.0 \text{ mA}; V_{CC} = 3.0 \text{ V}$	-	-	0.50	V
l _l	input leakage current	X1 input				
		$V_{I} = \overline{EN} = V_{CC}; V_{CC} = 0 \text{ V to } 3.6 \text{ V}$	-	-	±0.75	μA
		EN input				
		V _I = GND to 3.6 V; V _{CC} = 0 V to 3.6 V	-	-	±0.75	μA
pu	pull-up current	X1 input; $\overline{EN} = V_{CC}$				
-		$V_I = GND; V_{CC} = 0.8 V \text{ to } 3.6 V$	-	-	15	μA
l _{oz}	OFF-state output current	Y output; $V_{O} = 0$ V to 3.6 V; $V_{CC} = 0$ V to 3.6 V; $EN = V_{CC}$	-	-	±0.75	μA
OFF	power-off leakage current	V_{I} or V_{O} = 0 V to 3.6 V; V_{CC} = 0 V	[1] -	-	±0.75	μA
∆l _{OFF}	additional power-off leakage current		[1] -	-	±0.75	μA
СС	supply current	$\label{eq:VI} \begin{array}{l} V_{I}=GND \text{ or } V_{CC}; \ I_{O}=0 \ A; \\ V_{CC}=0.8 \ V \ to \ 3.6 \ V \end{array}$	-	-	75	μA
۵l _{CC}	additional supply current	EN input				
		$V_{I} = V_{CC} - 0.6 \text{ V}; I_{O} = 0 \text{ A};$ $V_{CC} = 3.3 \text{ V}$	-	-	75	μA

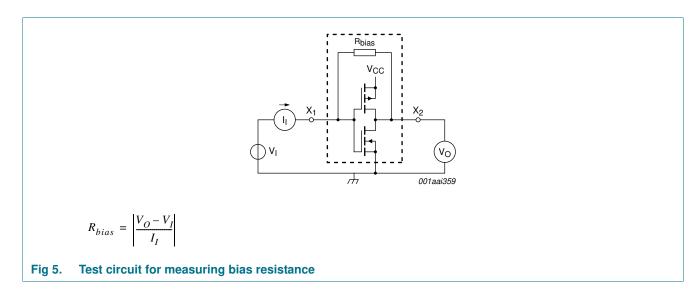
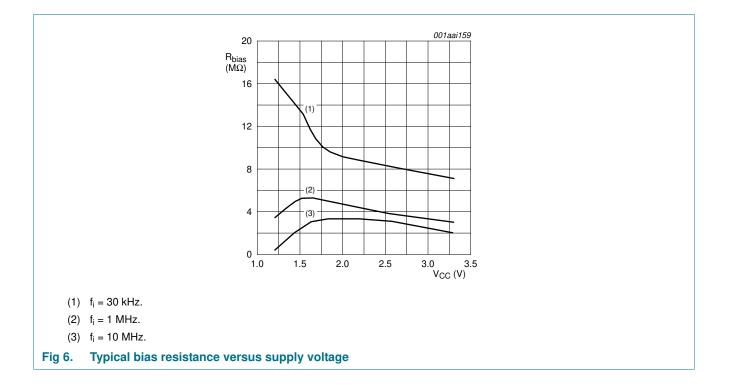

Low-power X-tal driver with enable and internal resistor; 3-state

Table 7. Static characteristics ... continued

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).


Symbol	Parameter	Conditions	Min	Тур	Max	Unit
9 _{fs}	forward transconductance	see Figure 10 and Figure 11				
		$V_{CC} = 0.8 V$	-	-	-	mA/V
		$V_{CC} = 1.1 V \text{ to } 1.3 V$	-	-	10.8	mA/V
		$V_{CC} = 1.4 V$ to 1.6 V	1.8	-	21.2	mA/V
		$V_{CC} = 1.65 \text{ V}$ to 1.95 V	6.9	-	29.9	mA/V
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	13.4	-	38.0	mA/V
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	15.8	-	39.2	mA/V
R _{bias}	bias resistance	$\overline{EN} = GND; f_i = 0 Hz; V_I = 0 V or V_{CC}; See Figure 5; for frequency behavior see Figure 6$	1.07	-	3.11	MΩ

[1] Only for output Y and input \overline{EN} .

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

Low-power X-tal driver with enable and internal resistor; 3-state

11. Dynamic characteristics

Table 8. Dynamic characteristics

Symbol	Parameter	Conditions			25 °C		-40	0 °C to +1	25 °C	Unit
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 5 p	F									
t _{pd}	propagation delay	X1 to X2; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	6.2	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		0.9	2.3	4.4	0.9	4.8	5.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$		0.7	1.7	3.1	0.6	3.4	3.8	ns
		V_{CC} = 1.65 V to 1.95 V		0.5	1.4	2.6	0.5	2.9	3.2	ns
		V_{CC} = 2.3 V to 2.7 V		0.4	1.1	2.0	0.4	2.3	2.6	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		0.3	1.0	1.8	0.3	2.1	2.4	ns
		X1 to Y; see Figure 7	[2]							
		$V_{CC} = 0.8 V$		-	18.5	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		2.8	5.9	12.5	3.2	14.8	16.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$		2.2	4.2	7.7	2.6	9.1	10.1	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		1.9	3.5	6.2	2.2	7.8	8.6	ns
		V_{CC} = 2.3 V to 2.7 V		1.6	2.9	4.8	1.9	6.2	6.9	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.4	2.6	4.1	1.7	4.7	5.2	ns
t _{en}	enable time	EN to Y; see Figure 8	[3]							
		$V_{CC} = 0.8 V$		-	31.2	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		3.1	6.1	13.8	2.9	16.3	18.0	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$		2.5	4.3	8.2	2.3	9.7	10.7	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		2.1	3.6	6.5	2.0	7.6	8.4	ns
		V_{CC} = 2.3 V to 2.7 V		1.8	2.9	4.8	1.7	5.8	6.4	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.7	2.6	4.1	1.7	4.7	5.2	ns
t _{dis}	disable time	EN to Y; see Figure 8	[4]							
		$V_{CC} = 0.8 V$		-	11.1	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V		2.5	4.5	9.0	2.9	9.4	10.4	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$		2.0	3.3	6.4	2.3	6.7	7.4	ns
		$V_{CC} = 1.65 \text{ V} \text{ to } 1.95 \text{ V}$		1.9	3.2	6.0	2.0	6.4	7.1	ns
		V_{CC} = 2.3 V to 2.7 V		1.4	2.3	4.4	1.7	4.7	5.2	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$		1.7	2.6	4.4	1.7	4.9	5.4	ns

Low-power X-tal driver with enable and internal resistor; 3-state

Symbol	Parameter	Conditions		25 °C			–40 °C to +125 °C		
			Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 10 p	σF		1						
pd	propagation delay	X1 to X2; see Figure 7	1						
		$V_{CC} = 0.8 V$	-	9.6	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	1.2	3.1	6.1	1.2	6.8	7.5	ns
		V _{CC} = 1.4 V to 1.6 V	1.0	2.3	4.0	0.9	4.6	5.1	ns
		V _{CC} = 1.65 V to 1.95 V	0.8	1.9	3.3	0.7	3.8	4.2	ns
		V_{CC} = 2.3 V to 2.7 V	0.6	1.5	2.7	0.6	3.1	3.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.5	1.3	2.4	0.5	2.7	3.0	ns
		X1 to Y; see Figure 7	1						
		$V_{CC} = 0.8 V$	-	21.4	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.2	6.7	14.3	3.6	16.2	17.9	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	4.9	8.9	3.0	10.1	11.2	ns
		V _{CC} = 1.65 V to 1.95 V	1.9	4.1	6.9	2.6	8.0	8.8	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.4	5.4	2.3	6.6	7.3	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.8	3.1	4.8	2.1	5.6	6.2	ns
en	enable time	EN to Y; see Figure 8	1						
		$V_{CC} = 0.8 V$	-	34.4	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V to } 1.3 \text{ V}$	3.6	6.9	15.5	3.4	16.0	17.6	ns
		V _{CC} = 1.4 V to 1.6 V	2.3	5.0	9.3	2.2	9.6	10.6	ns
		V _{CC} = 1.65 V to 1.95 V	2.0	4.2	7.2	1.9	7.9	8.7	ns
		V_{CC} = 2.3 V to 2.7 V	1.8	3.4	5.5	1.7	6.4	7.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.7	3.2	4.9	1.7	5.5	6.1	ns
dis	disable time	EN to Y; see Figure 8	1						
		$V_{CC} = 0.8 V$	-	13.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.4	5.7	10.4	3.4	10.8	11.9	ns
		V _{CC} = 1.4 V to 1.6 V	2.1	4.2	7.6	2.2	8.0	8.8	ns
		V _{CC} = 1.65 V to 1.95 V	2.2	4.3	7.3	1.9	7.6	8.4	ns
		V_{CC} = 2.3 V to 2.7 V	1.6	3.1	5.3	1.7	5.5	6.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.1	3.8	6.0	1.7	6.5	7.2	ns

Table 8. Dynamic characteristics ...continued

Low-power X-tal driver with enable and internal resistor; 3-state

Symbol	Parameter	Conditions		25 °C		-4	0 °C to +1	25 °C	Uni
			Min	Typ <mark>[1]</mark>	Max	Min	Max (85 °C)	Max (125 °C)	
C _L = 15	ρF								
pd	propagation delay	X1 to X2; see Figure 7	<u>2]</u>						
		$V_{CC} = 0.8 V$	-	13.0	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	1.6	3.8	7.9	1.4	8.8	9.7	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	1.3	2.8	4.9	1.1	5.7	6.3	ns
		V _{CC} = 1.65 V to 1.95 V	1.0	2.3	4.0	0.9	4.7	5.2	ns
		V_{CC} = 2.3 V to 2.7 V	0.8	1.9	3.2	0.8	3.7	4.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	0.7	1.6	2.9	0.7	3.3	3.7	ns
		X1 to Y; see Figure 7	<u>2]</u>						
		$V_{CC} = 0.8 V$	-	24.2	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	3.6	7.5	16.1	4.0	17.6	19.4	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	3.0	5.4	9.7	3.3	10.6	11.7	ns
		V _{CC} = 1.65 V to 1.95 V	2.2	4.6	7.7	2.9	9.0	9.9	ns
		V_{CC} = 2.3 V to 2.7 V	2.0	3.9	6.1	2.6	7.3	8.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	3.6	5.4	2.3	5.9	6.5	ns
en	enable time	EN to Y; see Figure 8	<u>8]</u>						
		$V_{CC} = 0.8 V$	-	37.5	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	4.0	7.7	17.2	3.7	17.5	19.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	3.0	5.5	10.0	2.5	10.2	11.3	ns
		V _{CC} = 1.65 V to 1.95 V	2.3	4.7	7.9	2.1	9.2	10.2	ns
		V_{CC} = 2.3 V to 2.7 V	2.0	3.9	6.2	2.0	7.4	8.2	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.0	3.6	5.5	1.9	6.0	6.6	ns
dis	disable time	EN to Y; see Figure 8	<u>1]</u>						
		$V_{CC} = 0.8 V$	-	14.8	-	-	-	-	ns
		$V_{CC} = 1.1 \text{ V} \text{ to } 1.3 \text{ V}$	4.3	6.8	11.2	3.7	12.4	13.7	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	3.0	5.1	8.1	2.5	8.9	9.8	ns
		V _{CC} = 1.65 V to 1.95 V	3.0	5.4	8.0	2.1	9.3	10.3	ns
		V_{CC} = 2.3 V to 2.7 V	2.1	3.9	6.1	2.0	7.3	8.1	ns
		V_{CC} = 3.0 V to 3.6 V	2.9	5.1	7.2	1.9	7.9	8.7	ns

Table 8. Dynamic characteristics ...continued

Low-power X-tal driver with enable and internal resistor; 3-state

Symbol	Parameter	Conditions		25 °C		-40	0 °C to +1	25 °C	Unit
			Min	Typ[1]	Мах	Min	Max (85 °C)	Max (125 °C)	
C _L = 30	ρF								
pd	propagation delay	X1 to X2; see Figure 7 [2]							
		$V_{CC} = 0.8 V$	-	23.2	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	2.4	6.0	13.1	2.2	14.8	16.3	ns
		$V_{CC} = 1.4 \text{ V} \text{ to } 1.6 \text{ V}$	2.0	4.2	7.6	1.8	9.0	9.9	ns
		V _{CC} = 1.65 V to 1.95 V	1.7	3.6	6.1	1.5	7.2	8.0	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	1.4	2.9	4.8	1.3	5.7	6.3	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	1.2	2.5	4.3	1.1	5.1	5.7	ns
		X1 to Y; see Figure 7 [2]							
		$V_{CC} = 0.8 V$	-	32.6	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	4.8	9.6	21.0	5.0	21.7	23.9	ns
		$V_{CC} = 1.4 V \text{ to } 1.6 V$	4.0	6.9	12.4	4.3	13.5	14.9	ns
		V _{CC} = 1.65 V to 1.95 V	2.9	5.9	9.8	3.8	10.7	11.8	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	2.7	5.0	7.5	3.3	8.2	9.1	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.7	4.7	6.8	3.1	7.7	8.5	ns
en	enable time	EN to Y; see Figure 8 [3]							
		$V_{CC} = 0.8 V$	-	47.1	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	5.2	9.9	21.0	4.8	21.7	23.9	ns
		$V_{CC} = 1.4 V \text{ to } 1.6 V$	4.0	7.1	12.4	3.1	13.5	14.9	ns
		V _{CC} = 1.65 V to 1.95 V	3.0	6.0	9.9	2.8	10.7	11.8	ns
		$V_{CC} = 2.3 \text{ V} \text{ to } 2.7 \text{ V}$	2.7	5.0	7.7	2.6	8.1	9.0	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	2.7	4.8	6.8	2.6	7.7	8.5	ns
dis	disable time	EN to Y; see Figure 8 [4]							
		$V_{CC} = 0.8 V$	-	20.3	-	-	-	-	ns
		V _{CC} = 1.1 V to 1.3 V	6.0	10.2	15.3	4.8	16.5	18.2	ns
		V _{CC} = 1.4 V to 1.6 V	4.4	7.8	11.2	3.1	12.3	13.6	ns
		V _{CC} = 1.65 V to 1.95 V	5.1	8.8	12.5	2.8	13.3	14.7	ns
		V_{CC} = 2.3 V to 2.7 V	3.6	6.3	8.6	2.6	9.5	10.5	ns
		$V_{CC} = 3.0 \text{ V} \text{ to } 3.6 \text{ V}$	5.2	8.8	11.5	2.6	13.0	14.3	ns

Table 8. Dynamic characteristics ...continued

Low-power X-tal driver with enable and internal resistor; 3-state

Table 8. Dynamic characteristics ...continued

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 9.

Symbol	Parameter	Conditions		25 °C		–40 °C to +125 °C			Unit	
				Min	Typ <mark>[1]</mark>	Мах	Min	Max (85 °C)	Max (125 °C)	-
C _L = 5 pl	F, 10 pF, 15 pF and	30 pF								
. 5	power dissipation capacitance	$f_i = 1 \text{ MHz}; \overline{EN} = GND;$ V _I = GND to V _{CC}	<u>[5][6]</u>							
		$V_{CC} = 0.8 V$		-	7.1	-	-	-	-	pF
		V _{CC} = 1.1 V to 1.3 V		-	12.9	-	-	-	-	pF
		V_{CC} = 1.4 V to 1.6 V		-	19.2	-	-	-	-	pF
		V_{CC} = 1.65 V to 1.95 V		-	19.9	-	-	-	-	pF
		V_{CC} = 2.3 V to 2.7 V		-	21.6	-	-	-	-	pF
		$V_{CC} = 3.0 \text{ V}$ to 3.6 V		-	24.3	-	-	-	-	pF

[1] All typical values are measured at nominal $V_{\mbox{\scriptsize CC}}.$

[2] t_{pd} is the same as t_{PLH} and t_{PHL} .

[3] t_{en} is the same as t_{PZH} and t_{PZL} .

[4] t_{dis} is the same as t_{PHZ} and t_{PLZ} .

[5] C_{PD} is used to determine the dynamic power dissipation (P_D in μ W).

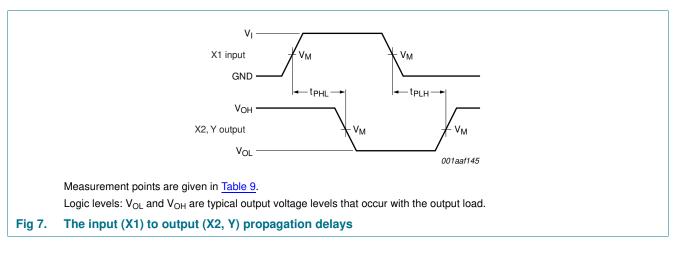
 $P_{D} = C_{PD} \times V_{CC}^{2} \times f_{i} \times N + \Sigma (C_{L} \times V_{CC}^{2} \times f_{o}) \text{ where:}$

 $f_i = input frequency in MHz;$

 f_0 = output frequency in MHz;

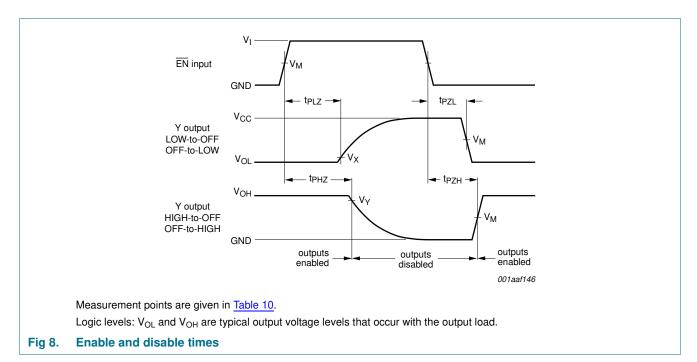
 C_L = output load capacitance in pF;

 V_{CC} = supply voltage in V;


N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}{}^2 \times f_o)$ = sum of the outputs.

[6] Feedback current is included in C_{PD} .

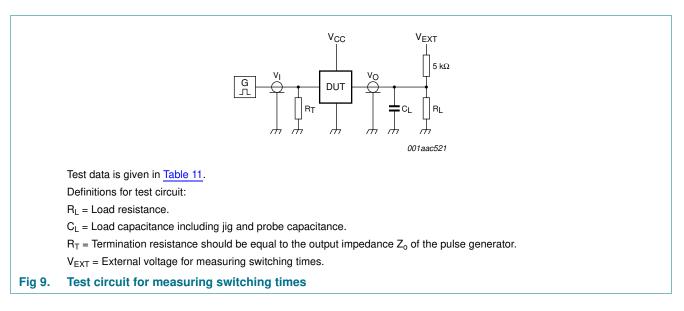

Low-power X-tal driver with enable and internal resistor; 3-state

12. Waveforms

Table 9. Measurement points

Supply voltage	Output	Input							
V _{CC}	V _M	V _M	VI	t _r = t _f					
0.8 V to 3.6 V	$0.5 imes V_{CC}$	$0.5\times V_{CC}$	V _{CC}	\leq 3.0 ns					

Table 10. Measurement points


Supply voltage	Input	Output	Output							
V _{CC}	V _M	V _M	V _X	V _Y						
0.8 V to 1.6 V	$0.5 imes V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.1 V	V _{OH} – 0.1 V						
1.65 V to 2.7 V	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.15 V	V _{OH} – 0.15 V						
3.0 V to 3.6 V	$0.5\times V_{CC}$	$0.5\times V_{CC}$	V _{OL} + 0.3 V	V _{OH} – 0.3 V						

Product data sheet

74AUP1Z125

© NXP B.V. 2012. All rights reserved.

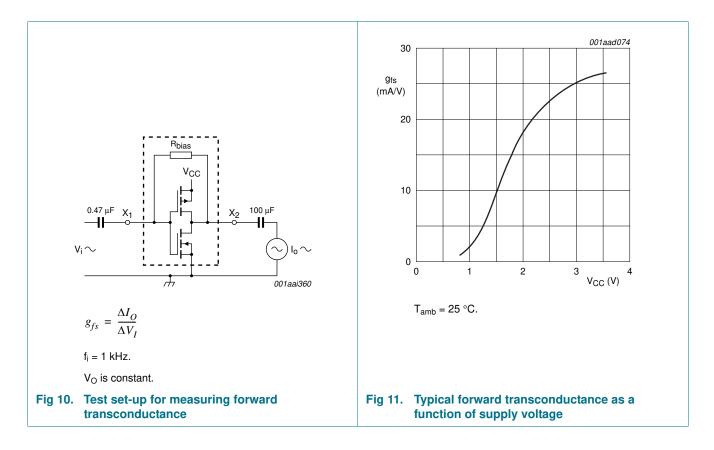
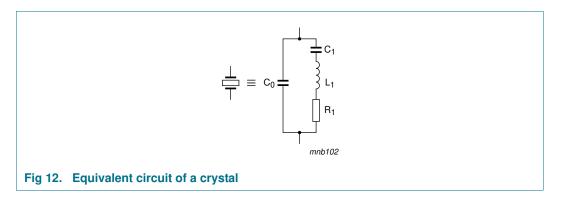

Low-power X-tal driver with enable and internal resistor; 3-state

Table 11. Test data

Supply voltage	Load	V _{EXT}				
V _{cc}	CL	R _L [1]	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ}	
0.8 V to 3.6 V	5 pF, 10 pF, 15 pF and 30 pF	5 k Ω or 1 M Ω	open	GND	$2 \times V_{CC}$	

[1] For measuring enable and disable times $R_L = 5 k\Omega$, for measuring propagation delays, setup and hold times and pulse width $R_L = 1 M\Omega$.

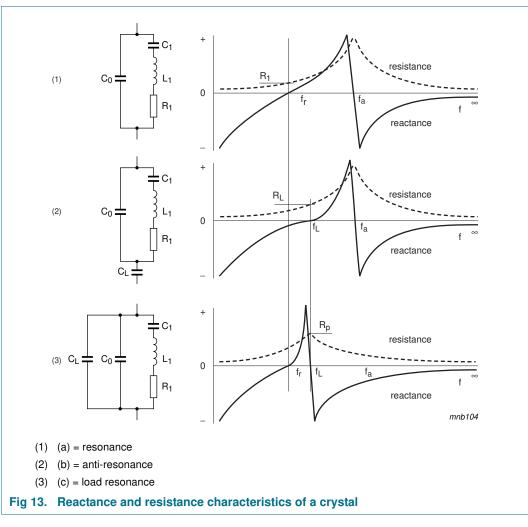
Low-power X-tal driver with enable and internal resistor; 3-state


13. Application information

Crystal controlled oscillator circuits are widely used in clock pulse generators because of their excellent frequency stability and wide operating frequency range. The use of the 74AUP1Z125 provides the additional advantages of low power dissipation, stable operation over a wide range of frequency and temperature and a very small footprint. This application information describes crystal characteristics, design and testing of crystal oscillator circuits based on the 74AUP1Z125.

13.1 Crystal characteristics

Figure 12 is the equivalent circuit of a quartz crystal.


The reactive and resistive components of the impedance of the crystal alone, and the crystal with a series and a parallel capacitance, is shown in Figure 13.

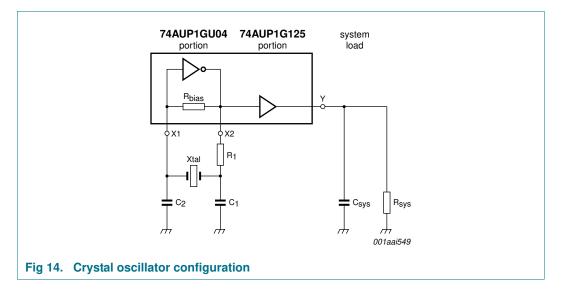
21 of 32

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

13.1.1 Design

Figure 14 shows the recommended way to connect a crystal to the 74AUP1Z125. This circuit is basically a Pierce oscillator circuit in which the crystal is operating at its fundamental frequency and tuned by the parallel load capacitance of C_1 and C_2 . C_1 and C_2 are in series with the crystal. They should be approximately equal. R_1 is the drive-limiting resistor and is set to approximately the same value as the reactance of C_1 at the crystal frequency ($R_1 = X_{C1}$). This results in an input to the crystal of 50 % of the rail-to-rail output of X2. This keeps the drive level into the crystal within drive specifications (the designer should verify this). Overdriving the crystal can cause damage.


The internal bias resistor provides negative feedback and sets a bias point of the inverter near mid-supply, operating the 74AUP1GU04 in the high gain linear region.

To calculate the values of C_1 and C_2 , the designer can use the formula:

$$C_L = \frac{C_1 \times C_2}{C_1 + C_2} + C_s$$

 C_L is the load capacitance as specified by the crystal manufacturer. C_s is the stray capacitance of the circuit and for 74AUP1Z125, C_s is equal to an input capacitance of 1.5 pF.

Low-power X-tal driver with enable and internal resistor; 3-state

13.1.2 Testing

After the calculations are performed for a particular crystal, the oscillator circuit should be tested. The following simple checks verify the prototype design of a crystal controlled oscillator circuit. Perform the checks after laying out the board:

- Test the oscillator over worst-case conditions (lowest supply voltage, worst-case crystal and highest operating temperature). Adding series and parallel resistors can simulate a worse case crystal.
- Insure that the circuit does not oscillate without the crystal.
- Check the frequency stability over a supply range greater than that which is likely to occur during normal operation.
- Check that the start-up time is within system requirements.

As the 74AUP1Z125 isolates the system loading, once the design is optimized, the single layout may work in multiple applications for any given crystal.

74AUP1Z125 Product data sheet

74AUP1Z125

Low-power X-tal driver with enable and internal resistor; 3-state

14. Package outline

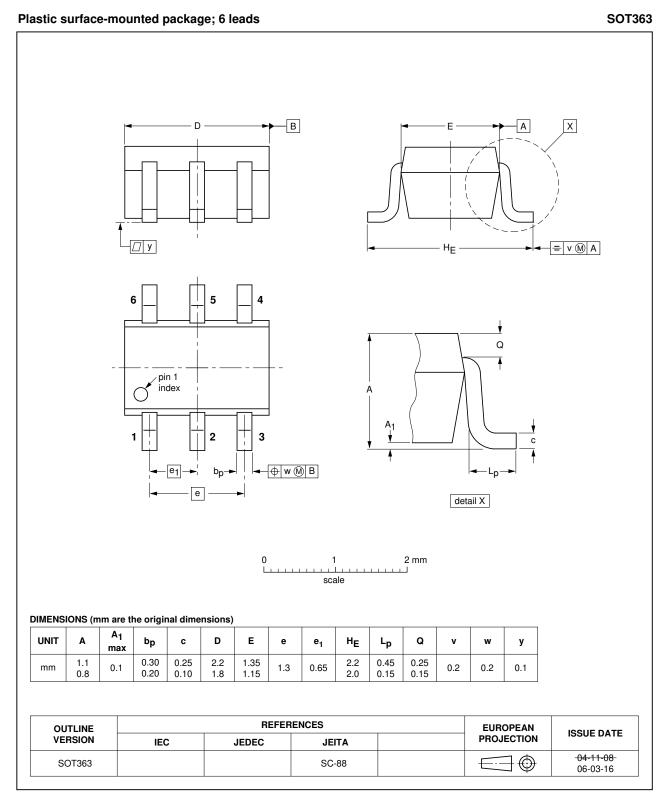


Fig 15. Package outline SOT363 (SC-88)

All information provided in this document is subject to legal disclaimers.

74AUP1Z125