

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74AVC20T245

20-bit dual supply translating transceiver with configurable voltage translation; 3-state

Rev. 7 — 8 March 2012

Product data sheet

1. General description

The 74AVC20T245 is a 20-bit, dual supply transceiver that enables bi-directional voltage level translation. The device can be used as two 10-bit transceivers or as a single 20-bit transceiver. It features four 10-bit input-output ports (1An, 1Bn and 2An, 2Bn), two output enable inputs ($n\overline{OE}$), two direction inputs (nDIR) and dual supplies ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ and $V_{CC(B)}$ can be independently supplied at any voltage between 0.8 V and 3.6 V making the device suitable for bi-directional voltage level translation between any of the low voltage nodes: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V. The 1An and 2An ports, $n\overline{OE}$ and nDIR are referenced to $V_{CC(A)}$, the 1Bn and 2Bn ports are referenced to $V_{CC(B)}$. A HIGH on a 1DIR allows transmission from 1An to 1Bn and a LOW on 1DIR allows transmission from 1Bn to 1An. A HIGH on $n\overline{OE}$ causes the outputs to assume a HIGH impedance OFF-state.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, all output ports will assume a high impedance OFF-state.

2. Features and benefits

- Wide supply voltage range:
 - ◆ V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - ◆ JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - 380 Mbit/s (≥ 1.8 V to 3.3 V translation)
 - 260 Mbit/s (≥ 1.1 V to 3.3 V translation)
 - ◆ 260 Mbit/s (≥ 1.1 V to 2.5 V translation)
 - ◆ 210 Mbit/s (≥ 1.1 V to 1.8 V translation)

74AVC20T245

20-bit dual supply translating transceiver; 3-state

- ◆ 120 Mbit/s (≥ 1.1 V to 1.5 V translation)
- ◆ 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

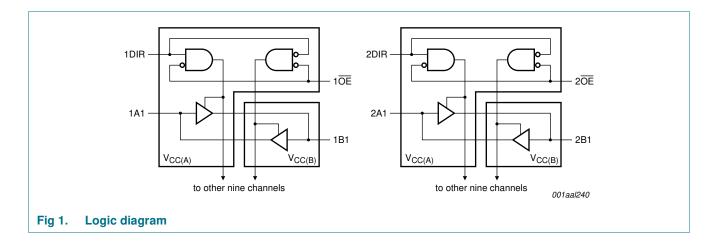
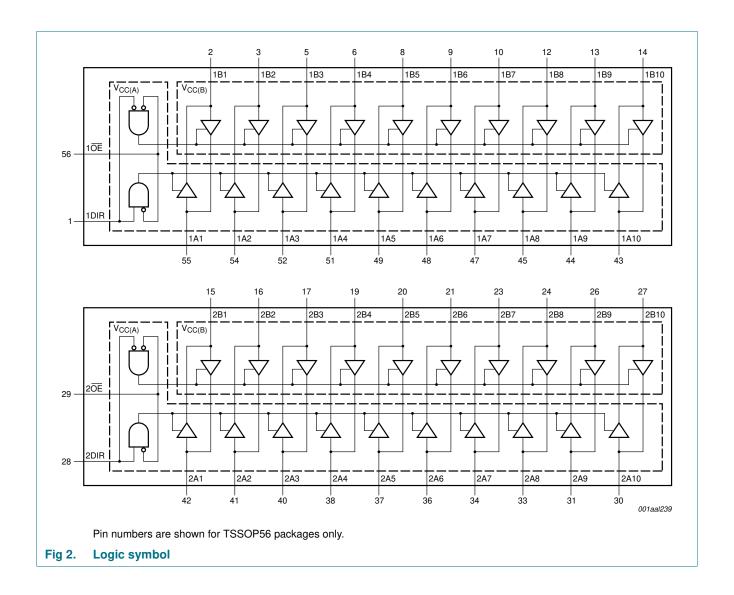

3. Ordering information

Table 1. Ordering information

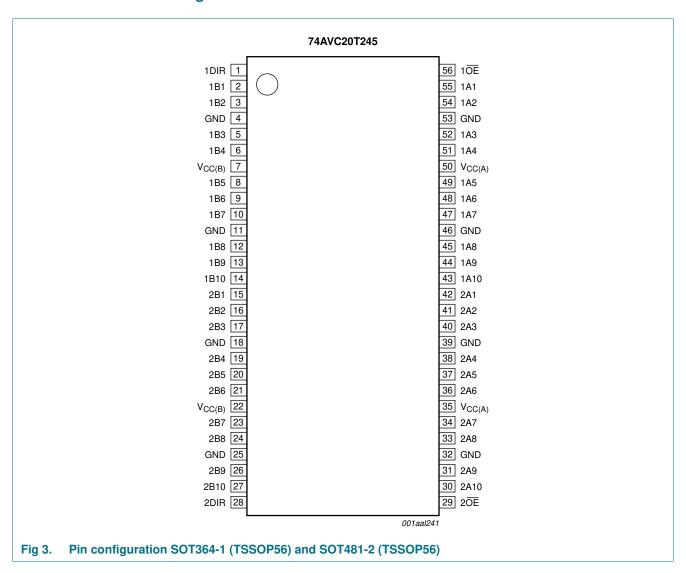
Type number	Package						
	Temperature range	Name	Description	Version			
74AVC20T245DGG	-40 °C to +125 °C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1			
74AVC20T245DGV	–40 °C to +125 °C	TSSOP56 ¹¹	plastic thin shrink small outline package; 56 leads; body width 4.4 mm	SOT481-2			
74AVC20T245BX	–40 °C to +125 °C	HXQFN60	plastic compatible thermal enhanced extremely thin quad flat package; no leads; 60 terminals; body $4\times6\times0.5$ mm	SOT1134-2			


^[1] Also known as TVSOP56.

4. Functional diagram

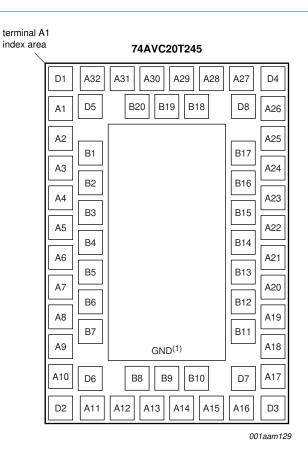
Product data sheet

2 of 27



74AVC20T245

20-bit dual supply translating transceiver; 3-state


5. Pinning information

5.1 Pinning

NXP Semiconductors 74AVC20T245

20-bit dual supply translating transceiver; 3-state

(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND.

Fig 4. Pin configuration SOT1134-2 (HXQFN60)

5.2 Pin description

Table 2. Pin description

Symbol	Pin		Description
	SOT364-1 and SOT481-2	SOT1134-2	
1DIR, 2DIR	1, 28	A30, A13	direction control
1B1 to 1B10	2, 3, 5, 6, 8, 9, 10, 12, 13, 14	B20, A31, D5, D1, B1, A2, B2, A4, B3, A5	data input or output
2B1 to 2B10	15, 16, 17, 19, 20, 21, 23, 24, 26, 27	A6, B5, A7, B6, A9, B7, D2, D6, A12, B8	data input or output
GND[1]	4, 11, 18, 25, 32, 39, 46, 53	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)
$V_{CC(B)}$	7, 22	A1, A10	supply voltage B (nBn inputs are referenced to $V_{\text{CC(B)}}$)
1 0E , 2 0E	56, 29	A29, A14	output enable input (active LOW)
1A1 to 1A10	55, 54, 52, 51, 49, 48, 47, 45, 44, 43	B18, A28, D8, D4, B17, A25, B16, A23, B15, A22	data input or output
2A1 to 2A10	42, 41, 40, 38, 37, 36, 34, 33, 31, 30	A21, B13, A20, B12, A18, B11, D3, D7, A15, B10	data input or output
$V_{CC(A)}$	35, 50	A17, A26	supply voltage A (nAn, n \overline{OE} and nDIR inputs are referenced to $V_{CC(A)}$)
n.c.	-	B4, B9, B14, B19	not connected

^[1] All GND pins must be connected to ground (0 V).

Functional description

Function table[1] Table 3.

Supply voltage	Input	Input		Input/output[2]		
V _{CC(A)} , V _{CC(B)}	nOE[3]	nDIR[3]	nAn[3]	nBn[3]		
0.8 V to 3.6 V	L	L	nAn = nBn	input		
0.8 V to 3.6 V	L	Н	input	nBn = nAn		
0.8 V to 3.6 V	Н	Χ	Z	Z		
GND[2]	Χ	Χ	Z	Z		

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

^[2] If at least one of $V_{\text{CC}(A)}$ or $V_{\text{CC}(B)}$ is at GND level, the device goes into suspend mode.

^[3] The nAn, nDIR and nOE input circuit is referenced to V_{CC(A)}; The nBn input circuit is referenced to V_{CC(B)}.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+4.6	V
V _{CC(B)}	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	$V_I < 0 V$	–50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
l _{OK}	output clamping current	V _O < 0 V	–50	-	mA
V_{O}	output voltage	Active mode	[1][2][3] -0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CCO}$	<u>[2]</u> -	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I _{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$			
		TSSOP56 package	<u>[4]</u> _	600	mW
		HXQFN60 package	<u>[5]</u> _	1000	mW

^[1] The minimum input and minimum output voltage ratings may be exceeded if the input and output clamping current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		0.8	3.6	V
V _{CC(B)}	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode	[1] 0	V_{CCO}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CCI} = 0.8 \text{ V to } 3.6 \text{ V}$	<u>[2]</u> -	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

Product data sheet

7 of 27

^[2] V_{CCO} is the supply voltage associated with the output port.

^[3] $V_{CCO} + 0.5 \text{ V}$ should not exceed 4.6 V.

^[4] Above 55 $^{\circ}$ C the value of P_{tot} derates linearly with 8.0 mW/K.

^[5] Above 70 °C the value of Ptot derates linearly with 1.8 mW/K.

^[2] V_{CCI} is the supply voltage associated with the input port.

9. Static characteristics

Table 6. Typical static characteristics at $T_{amb} = 25 \, ^{\circ}C_{1}^{1}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.69	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}				
		$I_{O} = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-	0.07	-	V
l _l	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±0.025	±0.25	μΑ
l _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6$ V	[3] _	±0.5	±2.5	μΑ
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	[3]	±0.5	±2.5	μΑ
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	[3] _	±0.5	±2.5	μΑ
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±0.1	±1	μΑ
		B port; V_1 or $V_O = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-	±0.1	±1	μΑ
Cı	input capacitance	nDIR, n \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = V _{CC(B)} = 3.3 V	-	2.0	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_O = 3.3 \text{ V or } 0 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-	4.0	-	pF

^[1] V_{CCO} is the supply voltage associated with the output port.

Table 7. Static characteristics [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Parameter	Conditions	–40 °C to	+85 °C	–40 °C to	+125 °C	Unit
		Min	Max	Min	Max	
HIGH-level	data input					'
input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
	V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
	$V_{CCI} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
	$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
	nDIR, nOE input					
	$V_{CC(A)} = 0.8 \text{ V}$	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
	$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
	$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
	$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
		HIGH-level input voltage	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{tabular}{ l l l l l l l l l l l l l l l l l l l$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 7. Static characteristics ...continued 11[2]
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C t	o +85 °C	-40 °C to	+125 °C	Un
			Min	Max	Min	Max	
/ _{IL}	LOW-level	data input	ı				
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	٧
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	٧
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	٧
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-	0.8	٧
		nDIR, nOE input					
		$V_{CC(A)} = 0.8 \text{ V}$	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	V
		$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	٧
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	٧
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.8	-	0.8	٧
′он	HIGH-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_{O} = -100 \mu A;$	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	٧
		$V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$					
		$I_{O} = -3 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		$I_{O} = -6 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	-	٧
		$I_O = -8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	1.2	-	٧
		$I_O = -9 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	1.75	-	٧
		$I_O = -12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3	0.30V _{CCI} 0.35V _{CCI} 0.7 0.8 0.30V _{CC(A)} 0.7 0.8	٧
OL	LOW-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_O = 100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	-	0.1	-	0.1	٧
		I _O = 3 mA; V _{CC(A)} = V _{CC(B)} = 1.1 V	-	0.25	-	0.35V _{CCI} 0.7 0.8 0.30V _{CC(A)} 0.35V _{CC(A)} 0.7 0.8 0.1 0.1 0.25 0.35 0.45 0.55 0.7 ±5 ±30 ±30	٧
		$I_O = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	0.35	-		٧
		$I_O = 8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-	0.45	-	0.45	٧
		$I_O = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	0.55	-	0.55	٧
		$I_{O} = 12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	0.7	-	0.7	٧
	input leakage current	nDIR, $\overline{\text{NOE}}$ input; $V_I = 0 \text{ V or } 3.6 \text{ V}$; $V_{\text{CC(A)}} = V_{\text{CC(B)}} = 0.8 \text{ V to } 3.6 \text{ V}$	-	±1	-	±5	μ A
Σ	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6$ V	[3] _	±5	-	±30	μA
	•	suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}; V_{CC(A)} = 3.6 \text{ V};$ $V_{CC(B)} = 0 \text{ V}$	[3] -	±5	-	±30	μA
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}; V_{CC(A)} = 0 \text{ V};$ $V_{CC(B)} = 3.6 \text{ V}$	[3] -	±5	-	±30	μΑ

Table 7. Static characteristics ...continued [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	-40 °C 1	to +85 °C	–40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{OFF}	power-off leakage	A port; V_1 or $V_O = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±5	-	±30	μΑ
	current	B port; V_1 or $V_O = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-	±5	-		μА
I _{CC}	supply current	A port; $V_I = 0 V \text{ or } V_{CCI}$; $I_O = 0 A$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	45	-	190	μА
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	35	-	140	μА
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	35	-	140	μΑ
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-5	-	-20	-	μΑ
		B port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	45	-	190	μА
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	35	-	140	μА
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	- 5	-	-20	-	μΑ
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-	35	-	140	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	80	-	270	μА
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	65	-	220	μΑ

^[1] V_{CCO} is the supply voltage associated with the output port.

Table 8. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}	V _{CC(B)}	V _{CC(B)}						
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μΑ
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μΑ
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μΑ
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μΑ

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] For I/O ports, the parameter I_{OZ} includes the input leakage current.

10. Dynamic characteristics

Table 9. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25$ °C [1][2] Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} =	= V _{CC(B)}			Unit
			V 8.0	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C_{PD}	power dissipation capacitance	A port: (direction A to B); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction A to B); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction B to A); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		A port: (direction B to A); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction A to B); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		B port: (direction A to B); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction B to A); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		B port: (direction B to A); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

 f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L\times V_{CC}{}^2\times f_o)$ = sum of the outputs.

[2] f_i = 10 MHz; V_I = GND to V_{CC} ; t_r = t_f = 1 ns; C_L = 0 pF; R_L = ∞ Ω .

74AVC20T245

20-bit dual supply translating transceiver; 3-state

Table 10. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ }^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

Symbol	Parameter	Conditions	V _{CC(B)}						Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t_{pd}	propagation delay	nAn to nBn	14.4	7.0	6.2	6.0	5.9	6.0	ns
	nBn to nAn	14.4	12.4	12.1	11.9	11.8	11.8	ns	
t _{dis}	disable time	nOE to nAn	16.2	16.2	16.2	16.2	16.2	16.2	ns
		nOE to nBn	17.6	10.0	9.0	9.1	8.7	9.3	ns
t _{en}	enable time	nOE to nAn	21.9	21.9	21.9	21.9	21.9	21.9	ns
		nOE to nBn	22.2	11.1	9.8	9.4	9.4	9.6	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 11. Typical dynamic characteristics at $V_{CC(B)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ °C } \square$ Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

Symbol	Parameter	Conditions			Vo	V _{CC(A)}							
Cymbol	T diamotoi		0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	Unit				
t_{pd}	propagation delay	nAn to nBn	14.4	12.4	12.1	11.9	11.8	11.8	ns				
		nBn to nAn	14.4	7.0	6.2	6.0	5.9	6.0	ns				
t _{dis}	disable time	nOE to nAn	16.2	5.9	4.4	4.2	3.1	3.5	ns				
		nOE to nBn	17.6	14.2	13.7	13.6	13.3	13.1	ns				
t _{en}	enable time	nOE to nAn	21.9	6.4	4.4	3.5	2.6	2.3	ns				
		nOE to nBn	22.2	17.7	17.2	17.0	16.8	16.7	ns				

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

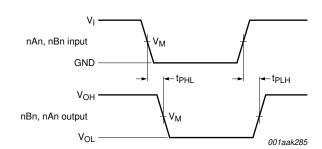
Table 12. Dynamic characteristics for temperature range –40 °C to +85 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

Symbol	Parameter	Conditions					V _C	C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V				1								
t _{pd}	propagation	nAn to nBn	0.5	9.4	0.5	7.1	0.5	6.2	0.5	5.2	0.5	5.1	ns
	delay	nBn to nAn	0.5	9.4	0.5	8.9	0.5	8.7	0.5	8.4	0.5	8.2	ns
t _{dis}	disable time	n OE to nAn	2.0	11.9	2.0	11.9	2.0	11.9	2.0	11.9	2.0	11.9	ns
		nOE to nBn	1.5	12.7	1.5	9.8	1.5	9.6	1.0	8.1	1.0	9.0	ns
t _{en}	enable time	n OE to nAn	1.5	15.3	1.5	15.3	1.5	15.3	1.5	15.3	1.5	15.3	ns
		nOE to nBn	1.0	15.6	1.0	11.5	1.0	10.0	0.5	8.4	0.5	8.0	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.5	8.9	0.5	6.4	0.5	5.4	0.5	4.3	0.5	3.9	ns
	delay	nBn to nAn	0.5	7.1	0.5	6.4	0.5	6.1	0.5	5.8	0.5	5.7	ns
t _{dis}	disable time	nOE to nAn	2.0	9.0	2.0	9.0	2.0	9.0	2.0	9.0	2.0	9.0	ns
		nOE to nBn	1.5	11.7	1.5	9.0	1.5	7.8	1.0	6.4	1.0	6.0	ns
t _{en}	enable time	n OE to nAn	1.5	10.3	1.5	10.3	1.5	10.3	1.5	10.2	1.5	10.2	ns
		nOE to nBn	1.0	14.3	1.0	10.3	1.0	8.4	0.5	6.1	0.5	5.3	ns
V _{CC(A)} =	1.65 V to 1.95	V											
P	propagation	nAn to nBn	0.5	8.7	0.5	6.1	0.5	5.0	0.5	3.9	0.5	3.5	ns
	delay	nBn to nAn	0.5	6.2	0.5	5.4	0.5	5.0	0.5	4.7	0.5	4.6	ns
t _{dis}	disable time	nOE to nAn	2.0	7.4	2.0	7.4	2.0	7.4	2.0	7.4	2.0	7.4	ns
		nOE to nBn	1.5	11.3	1.5	8.7	1.5	7.4	1.0	5.8	1.0	5.6	ns
t _{en}	enable time	nOE to nAn	1.0	8.1	1.0	8.1	1.0	7.9	1.0	7.9	1.0	7.9	ns
		nOE to nBn	0.5	13.8	0.5	10.0	0.5	7.9	0.5	5.7	0.5	4.8	ns
$V_{CC(A)} =$	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.5	8.4	0.5	5.8	0.5	4.7	0.5	3.5	0.5	3.0	ns
	delay	nBn to nAn	0.5	5.2	0.5	4.3	0.5	3.9	0.5	3.5	0.5	3.4	ns
t _{dis}	disable time	nOE to nAn	1.1	5.2	1.1	5.2	1.1	5.2	1.1	5.2	1.1	5.2	ns
		nOE to nBn	1.2	10.8	1.2	8.2	1.2	6.9	1.0	5.3	1.0	5.2	ns
t _{en}	enable time	nOE to nAn	0.5	5.4	0.5	5.4	0.5	5.3	0.5	5.2	0.5	5.2	ns
		nOE to nBn	0.5	13.3	0.5	9.6	0.5	7.6	0.5	5.3	0.5	4.3	ns
$V_{CC(A)} =$	3.0 V to 3.6 V												
t _{pd}	propagation	nAn to nBn	0.5	8.2	0.5	5.7	0.5	4.6	0.5	3.4	0.5	2.9	ns
	delay	nBn to nAn	0.5	5.1	0.5	3.9	0.5	3.5	0.5	3.0	0.5	2.9	ns
t _{dis}	disable time	nOE to nAn	8.0	5.0	0.8	5.0	8.0	5.0	0.8	5.0	8.0	5.0	ns
		nOE to nBn	1.2	10.5	1.2	8.1	1.2	6.7	1.0	5.1	0.8	5.0	ns
t _{en}	enable time	nOE to nAn	0.5	4.4	0.5	4.4	0.5	4.3	0.5	4.2	0.5	4.1	ns
V 11		nOE to nBn	1.0	13.1	1.0	9.6	0.5	7.5	0.5	5.1	0.5	4.1	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

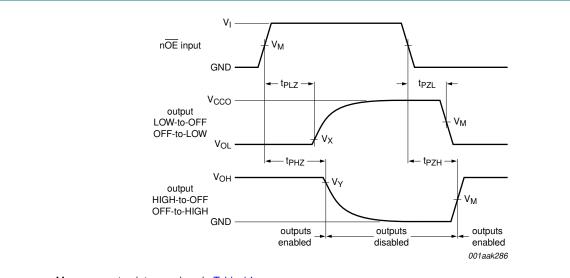
Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C [1]


Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

Symbol	Parameter	Conditions						C(B)					Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V		'		•		•	'			•		
t _{pd}	propagation	nAn to nBn	0.5	10.4	0.5	7.9	0.5	6.9	0.5	5.8	0.5	5.7	ns
	delay	nBn to nAn	0.5	10.4	0.5	9.8	0.5	9.6	0.5	9.3	0.5	9.1	ns
t _{dis}	disable time	n OE to nAn	2.0	13.1	2.0	13.1	2.0	13.1	2.0	13.1	2.0	13.1	ns
		n OE to nBn	1.5	14.0	1.5	10.8	1.5	10.6	1.0	9.0	1.0	9.9	ns
t _{en}	enable time	n OE to nAn	1.5	16.9	1.5	16.9	1.5	16.9	1.5	16.9	1.5	16.9	ns
		nOE to nBn	1.0	17.2	1.0	12.7	1.0	11.0	0.5	9.3	0.5	8.8	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t_{pd}	propagation	nAn to nBn	0.5	9.8	0.5	7.1	0.5	6.0	0.5	4.8	0.5	4.3	ns
	delay	nBn to nAn	0.5	7.9	0.5	7.1	0.5	6.8	0.5	6.4	0.5	6.3	ns
t _{dis}	disable time	nOE to nAn	2.0	9.9	2.0	9.9	2.0	9.9	2.0	9.9	2.0	9.9	ns
		nOE to nBn	1.5	12.9	1.5	9.9	1.5	8.6	1.0	7.1	1.0	6.6	ns
t _{en}	enable time	nOE to nAn	1.5	11.4	1.5	11.4	1.5	11.4	1.5	11.3	1.5	11.3	ns
		nOE to nBn	1.0	15.8	1.0	11.4	1.0	9.3	0.5	6.8	0.5	5.9	ns
V _{CC(A)} =	1.65 V to 1.95	V											
	propagation	nAn to nBn	0.5	9.6	0.5	6.8	0.5	5.5	0.5	4.3	0.5	3.9	ns
	delay	nBn to nAn	0.5	6.9	0.5	6.0	0.5	5.5	0.5	5.2	0.5	5.1	ns
t _{dis}	disable time	nOE to nAn	2.0	8.2	2.0	8.2	2.0	8.2	2.0	8.2	2.0	8.2	ns
		nOE to nBn	1.5	12.5	1.5	9.6	1.5	8.2	1.0	6.4	1.0	6.2	ns
t _{en}	enable time	nOE to nAn	1.0	9.0	1.0	9.0	1.0	8.7	1.0	8.7	1.0	8.7	ns
		nOE to nBn	0.5	15.2	0.5	11.0	0.5	8.7	0.5	6.3	0.5	5.3	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.5	9.3	0.5	6.4	0.5	5.2	0.5	3.9	0.5	3.3	ns
	delay	nBn to nAn	0.5	5.8	0.5	4.8	0.5	4.3	0.5	3.9	0.5	3.8	ns
t_{dis}	disable time	nOE to nAn	1.1	5.8	1.1	5.8	1.1	5.8	1.1	5.8	1.1	5.8	ns
		nOE to nBn	1.2	11.9	1.2	9.1	1.2	7.6	1.0	5.9	1.0	5.8	ns
t _{en}	enable time	nOE to nAn	0.5	6.0	0.5	6.0	0.5	5.9	0.5	5.8	0.5	5.8	ns
		nOE to nBn	0.5	14.7	0.5	10.6	0.5	8.4	0.5	5.9	0.5	4.8	ns
$V_{CC(A)} =$	3.0 V to 3.6 V												
t _{pd}	propagation	nAn to nBn	0.5	9.1	0.5	6.3	0.5	5.1	0.5	3.8	0.5	3.2	ns
	delay	nBn to nAn	0.5	5.7	0.5	4.3	0.5	3.9	0.5	3.3	0.5	3.2	ns
t _{dis}	disable time	nOE to nAn	8.0	5.5	8.0	5.5	8.0	5.5	8.0	5.5	8.0	5.5	ns
		nOE to nBn	1.2	11.6	1.2	9.0	1.2	7.4	1.0	5.7	0.8	5.5	ns
t _{en}	enable time	nOE to nAn	0.5	4.9	0.5	4.9	0.5	4.8	0.5	4.7	0.5	4.6	ns
		nOE to nBn	1.0	14.5	1.0	10.6	0.5	8.3	0.5	5.7	0.5	4.6	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

14 of 27


11. Waveforms

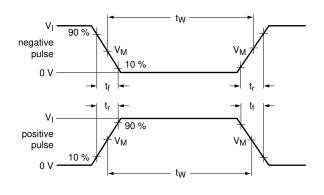
Measurement points are given in Table 14.

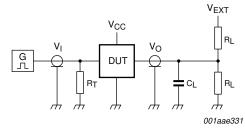
 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 5. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times

Measurement points are given in Table 14.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Fig 6. Enable and disable times


Table 14. Measurement points

Supply voltage	Input ^[1]	Output ^[2]							
$V_{CC(A)}, V_{CC(B)}$	V _M	V _M	V _X	V _Y					
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	$V_{OL} + 0.1 V$	$V_{OH}-0.1\ V$					
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	$V_{OL} + 0.15 V$	$V_{OH}-0.15\ V$					
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	$V_{OL} + 0.3 V$	V _{OH} – 0.3 V					

^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

Test data is given in Table 15.

R_L = Load resistance.

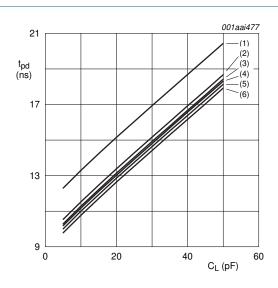
C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

 V_{EXT} = External voltage for measuring switching times.

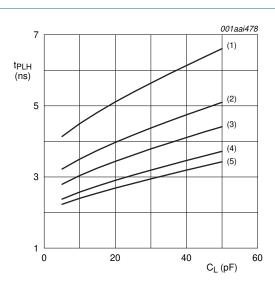
Fig 7. Test circuit for measuring switching times

Table 15. Test data

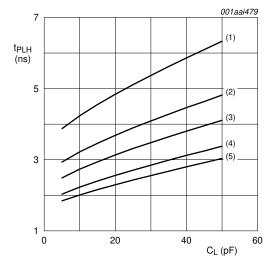

Supply voltage	tage Input		Load		V _{EXT}	V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	Δt/ΔV[2]	CL	R _L	t_{PLH} , t_{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]		
0.8 V to 1.6 V	V_{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		
1.65 V to 2.7 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		
3.0 V to 3.6 V	V _{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] dV/dt ≥ 1.0 V/ns
- [3] V_{CCO} is the supply voltage associated with the output port.

12. Typical propagation delay characteristics



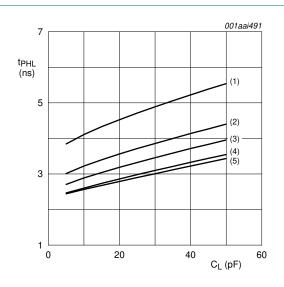
- a. Propagation delay (nAn to nBn); $V_{CC(A)} = 0.8 \text{ V}$
- (1) $V_{CC(B)} = 0.8 \text{ V}.$
- (2) $V_{CC(B)} = 1.2 \text{ V}.$
- (3) $V_{CC(B)} = 1.5 \text{ V}.$
- (4) $V_{CC(B)} = 1.8 \text{ V}.$
- (5) $V_{CC(B)} = 2.5 \text{ V}.$
- (6) $V_{CC(B)} = 3.3 \text{ V}.$



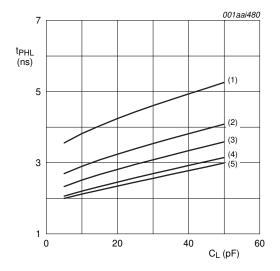
- b. Propagation delay (nAn to nBn); $V_{CC(B)} = 0.8 \text{ V}$
- (1) $V_{CC(A)} = 0.8 \text{ V}.$
- (2) $V_{CC(A)} = 1.2 \text{ V}.$
- (3) $V_{CC(A)} = 1.5 \text{ V}.$
- (4) $V_{CC(A)} = 1.8 \text{ V}.$ (5) $V_{CC(A)} = 2.5 \text{ V}.$
- (6) $V_{CC(A)} = 3.3 \text{ V}.$
- Fig 8. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

17 of 27

a. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 1.2 \text{ V}$

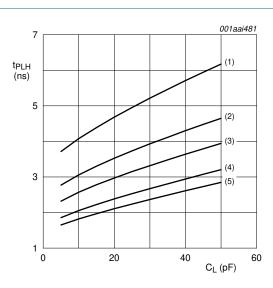


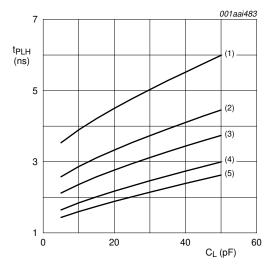
c. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 1.5 \text{ V}$



- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 1.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$

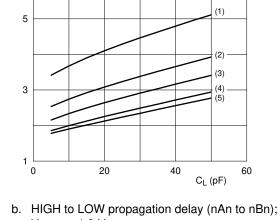
Fig 9. Typical propagation delay versus load capacitance; T_{amb} = 25 °C


b. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 1.2 \text{ V}$

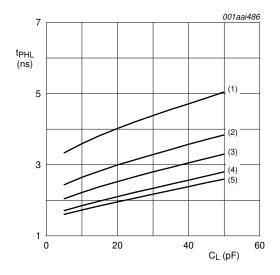

d. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 1.5 \text{ V}$

001aai482

20-bit dual supply translating transceiver; 3-state


a. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 1.8 \text{ V}$

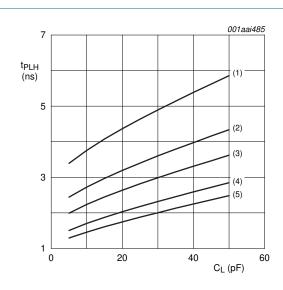
c. LOW to HIGH propagation delay (nAn to nBn); $V_{CC(A)} = 2.5 \text{ V}$

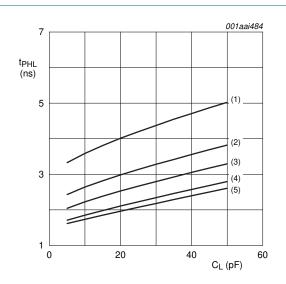

- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$

7

t_{PHL} (ns)

 $V_{CC(A)} = 1.8 \text{ V}$




d. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 2.5 \text{ V}$

NXP Semiconductors 74AVC20T245

20-bit dual supply translating transceiver; 3-state

- a. LOW to HIGH propagation delay (nAn to nBn); $V_{\text{CC(A)}} = 3.3 \text{ V}$
- b. HIGH to LOW propagation delay (nAn to nBn); $V_{CC(A)} = 3.3 \text{ V}$

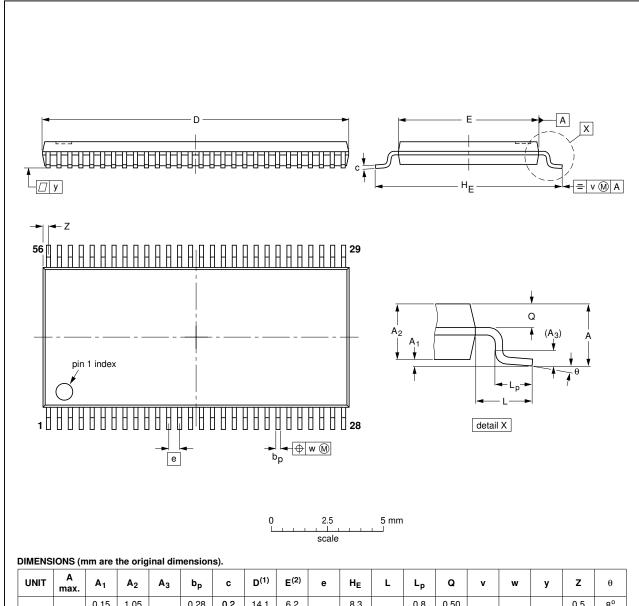

- (1) $V_{CC(B)} = 1.2 \text{ V}.$
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$

Fig 11. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

13. Package outline

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm

SOT364-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included

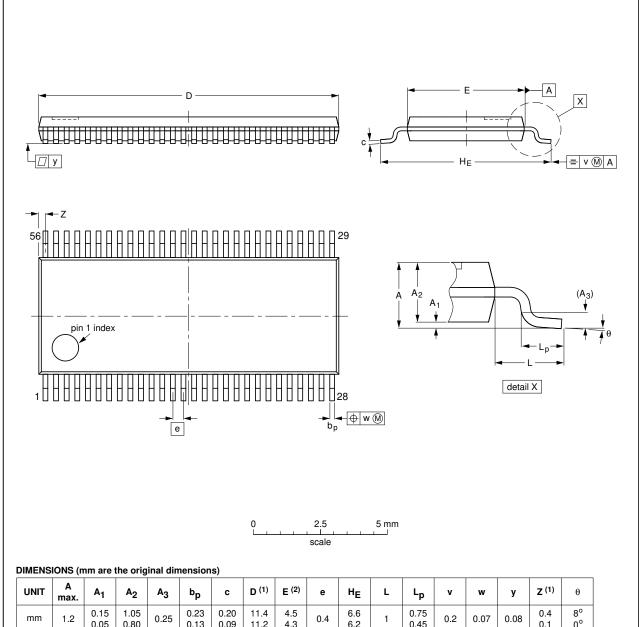

	REFER	EUROPEAN	ISSUE DATE		
IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE
	MO-153				-99-12-27 03-02-19
-	IEC	IEC JEDEC		IEC JEDEC JEITA	IEC JEDEC JEITA PROJECTION

Fig 12. Package outline SOT364-1 (TSSOP56)

74AVC20T245 All information provided in this document is subject to legal disclaimers.

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 4.4 mm

SOT481-2

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D (1)	E ⁽²⁾	е	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
mm	1.2	0.15 0.05	1.05 0.80	0.25	0.23 0.13	0.20 0.09	11.4 11.2	4.5 4.3	0.4	6.6 6.2	1	0.75 0.45	0.2	0.07	0.08	0.4 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION	IEC	JEDEC	JEITA		PROJECTION	1330E DATE
SOT481-2		MO-194				01-11-24

Fig 13. Package outline SOT481-2 (TSSOP56)

74AVC20T245 All information provided in this document is subject to legal disclaimers.

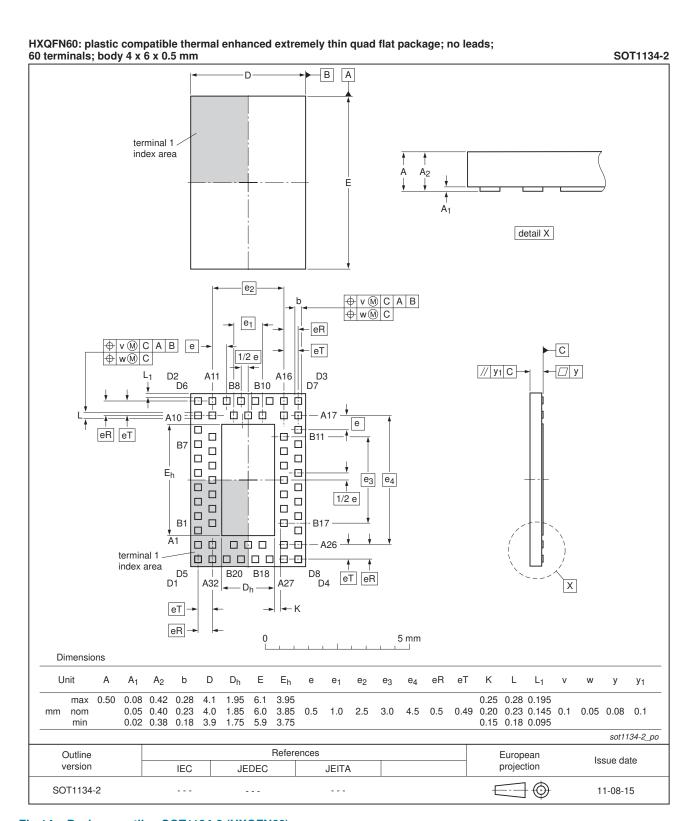


Fig 14. Package outline SOT1134-2 (HXQFN60)

74AVC20T245 All information provided in this document is subject to legal disclaimers.

© NXP B.V. 2012. All rights reserved.

14. Abbreviations

Table 16. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

15. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVC20T245 v.7	20120308	Product data sheet	-	74AVC20T245 v.6
Modifications:	 For type num 	ber 74AVC20T245BX the sot	code has changed to	SOT1134-2.
74AVC20T245 v.6	20111207	Product data sheet	-	74AVC20T245 v.5
Modifications:	 Legal pages 	updated.		
74AVC20T245 v.5	20110616	Product data sheet	-	74AVC20T245 v.4
74AVC20T245 v.4	20101124	Product data sheet	-	74AVC20T245 v.3
74AVC20T245 v.3	20100622	Product data sheet	-	74AVC20T245 v.2
74AVC20T245 v.2	20100318	Product data sheet	-	74AVC20T245 v.1
74AVC20T245 v.1	20100111	Product data sheet	-	-