

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74AVCH20T245

20-bit dual supply translating transceiver with configurable voltage translation; 3-state

Rev. 5 — 23 February 2016

Product data sheet

1. General description

The 74AVCH20T245 is a 20-bit, dual supply transceiver that enables bi-directional voltage level translation. The device can be used as two 10-bit transceivers or as a single 20-bit transceiver. It features four 10-bit input-output ports (1An, 1Bn and 2An, 2Bn), two output enable inputs ($n\overline{OE}$), two direction inputs (nDIR) and dual supplies ($V_{CC(A)}$ and $V_{CC(B)}$). $V_{CC(A)}$ and $V_{CC(B)}$ can be independently supplied at any voltage between 0.8 V and 3.6 V making the device suitable for bi-directional voltage level translation between any of the low voltage nodes: 0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V. The 1An and 2An ports, $n\overline{OE}$ and nDIR are referenced to $V_{CC(A)}$, the 1Bn and 2Bn ports are referenced to $V_{CC(B)}$. A HIGH on a 1DIR allows transmission from 1An to 1Bn and a LOW on 1DIR allows transmission from 1Bn to 1An. A HIGH on $n\overline{OE}$ causes the outputs to assume a HIGH impedance OFF-state.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{\text{CC}(A)}$ or $V_{\text{CC}(B)}$ are at GND level, all output ports will assume a high impedance OFF-state. The bus hold circuitry on the powered-up side always stays active.

The 74AVCH20T245 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features and benefits

- Wide supply voltage range:
 - ◆ V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - ◆ JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114E Class 3B exceeds 8000 V
 - ♦ MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:

- ◆ 380 Mbit/s (≥ 1.8 V to 3.3 V translation)
- ◆ 260 Mbit/s (≥ 1.1 V to 3.3 V translation)
- ◆ 260 Mbit/s (≥ 1.1 V to 2.5 V translation)
- ◆ 210 Mbit/s (≥ 1.1 V to 1.8 V translation)
- ◆ 120 Mbit/s (≥ 1.1 V to 1.5 V translation)
- ◆ 100 Mbit/s (≥ 1.1 V to 1.2 V translation)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

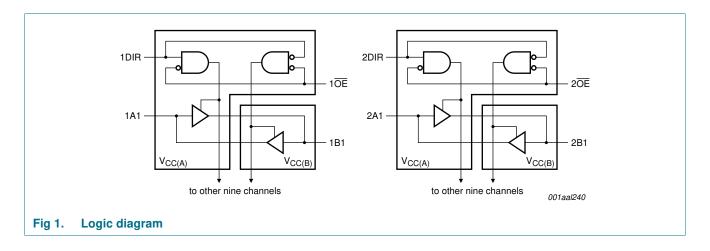
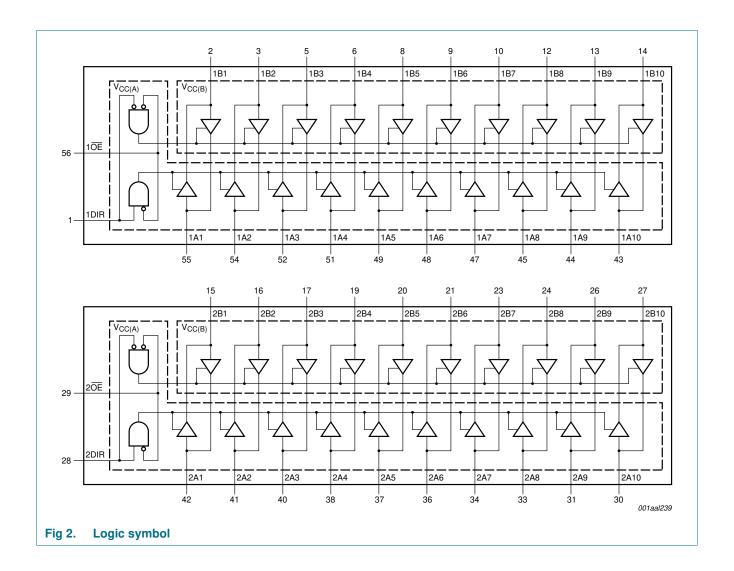
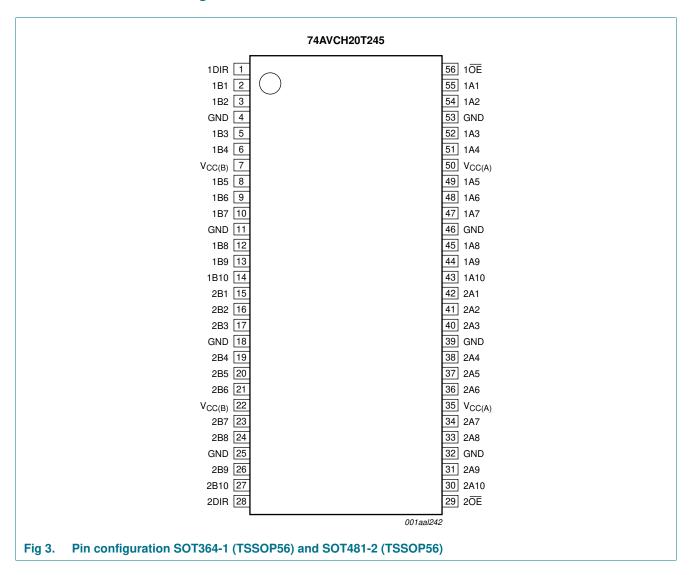

3. Ordering information

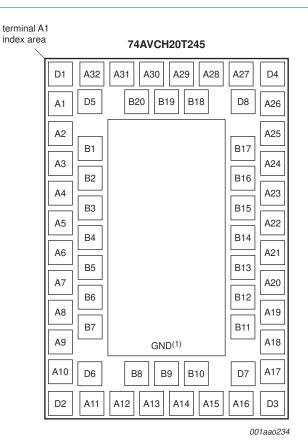
Table 1. Ordering information


Type number	Package							
	Temperature range	Name	Description	Version				
74AVCH20T245DGG	–40 °C to +125 °C	TSSOP56	plastic thin shrink small outline package; 56 leads; body width 6.1 mm	SOT364-1				
74AVCH20T245DGV	–40 °C to +125 °C	TSSOP56 ¹¹	plastic thin shrink small outline package; 56 leads; body width 4.4 mm	SOT481-2				
74AVCH20T245BX	–40 °C to +125 °C	HXQFN60U	plastic thermal enhanced extremely thin quad flat package; no leads; 60 terminals; UTLP based; body $4\times6\times0.5$ mm	SOT1134-1				

[1] Also known as TVSOP56.

4. Functional diagram




74AVCH20T245

5. Pinning information

5.1 Pinning

(1) This is not a supply pin. The substrate is attached to this pad using conductive die attach material. There is no electrical or mechanical requirement to solder this pad. However, if it is soldered, the solder land should remain floating or be connected to GND.

Fig 4. Pin configuration SOT1134-1 (HXQFN60U)

5.2 Pin description

Table 2. Pin description

Symbol	Pin		Description		
	SOT364-1 and SOT481-2	SOT1134-1			
1DIR, 2DIR	1, 28	A30, A13	direction control		
1B1 to 1B10	2, 3, 5, 6, 8, 9, 10, 12, 13, 14	B20, A31, D5, D1, B1, A2, B2, A4, B3, A5	data input or output		
2B1 to 2B10	15, 16, 17, 19, 20, 21, 23, 24, 26, 27	A6, B5, A7, B6, A9, B7, D2, D6, A12, B8	data input or output		
GND[1]	4, 11, 18, 25, 32, 39, 46, 53	A32, A3, A8, A11, A16, A19, A24, A27	ground (0 V)		
V _{CC(B)}	7, 22	A1, A10	supply voltage B (nBn inputs are referenced to $V_{\text{CC(B)}}$)		
10E, 20E	56, 29	A29, A14	output enable input (active LOW)		
1A1 to 1A10	55, 54, 52, 51, 49, 48, 47, 45, 44, 43	B18, A28, D8, D4, B17, A25, B16, A23, B15, A22	data input or output		
2A1 to 2A10	42, 41, 40, 38, 37, 36, 34, 33, 31, 30	A21, B13, A20, B12, A18, B11, D3, D7, A15, B10	data input or output		
V _{CC(A)}	35, 50	A17, A26	supply voltage A (nAn, n $\overline{\text{OE}}$ and nDIR inputs are referenced to $V_{\text{CC(A)}}$)		
n.c.	-	B4, B9, B14, B19	not connected		

^[1] All GND pins must be connected to ground (0 V).

6. Functional description

Table 3. Function table[1]

Supply voltage	Input		Input/output[2]	
V _{CC(A)} , V _{CC(B)}	nOE[3]	nDIR[3]	nAn[3]	nBn[3]
0.8 V to 3.6 V	L	L	nAn = nBn	input
0.8 V to 3.6 V	L	Н	input	nBn = nAn
0.8 V to 3.6 V	Н	X	Z	Z
GND[2]	X	X	Z	Z

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

^[2] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

^[3] The nAn, nDIR and nOE input circuit is referenced to V_{CC(A)}; The nBn input circuit is referenced to V_{CC(B)}.

7. Limiting values

Table 4. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Max	Unit
V _{CC(A)}	supply voltage A			-0.5	+4.6	٧
V _{CC(B)}	supply voltage B			-0.5	+4.6	V
I _{IK}	input clamping current	V _I < 0 V		-50	-	mA
VI	input voltage		[1]	-0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V		-50	-	mA
Vo	output voltage	Active mode	[1][2][3]	-0.5	V _{CCO} + 0.5	V
		Suspend or 3-state mode	[1]	-0.5	+4.6	V
Io	output current	$V_O = 0 \text{ V to } V_{CCO}$	[2]	-	±50	mA
I _{CC}	supply current	I _{CC(A)} or I _{CC(B)}		-	100	mA
I _{GND}	ground current			-100	-	mA
T _{stg}	storage temperature			-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$				
		TSSOP56 package	[4]	-	600	mW
		HXQFN60U package	<u>[5]</u>	-	1000	mW

^[1] The minimum input and minimum output voltage ratings may be exceeded if the input and output clamping current ratings are observed.

8. Recommended operating conditions

Table 5. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
V _{CC(A)}	supply voltage A		0.8	3.6	V
V _{CC(B)}	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
Vo	output voltage	Active mode [1	0	V _{CCO}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	V _{CCI} = 0.8 V to 3.6 V	-	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCO} is the supply voltage associated with the output port.

^[3] $V_{CCO} + 0.5 \text{ V}$ should not exceed 4.6 V.

^[4] Above 55 $^{\circ}$ C the value of P_{tot} derates linearly with 8.0 mW/K.

^[5] Above 70 °C the value of Ptot derates linearly with 1.8 mW/K.

^[2] V_{CCI} is the supply voltage associated with the input port.

9. Static characteristics

Table 6. Typical static characteristics at $T_{amb} = 25 \text{ °C}_{\frac{[1][2]}{2}}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		Min	Тур	Max	Unit
V _{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$		-	0.69	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		$I_{O} = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$		-	0.07	-	V
II	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V		-	±0.025	±0.25	μА
I _{BHL}	bus hold LOW current	A or B port; $V_I = 0.42 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[3]	-	26	-	μА
I _{BHH}	bus hold HIGH current	A or B port; $V_I = 0.78 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[4]	-	-24	-	μА
I _{BHLO}	bus hold LOW overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[5]	-	27	-	μА
I _{BHHO}	bus hold HIGH overdrive current	A or B port; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[6]</u>	-	-26	-	μА
I _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 3.6$ V	[7]	-	±0.5	±2.5	μА
		suspend mode A port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 3.6 \text{ V}$; $V_{CC(B)} = 0 \text{ V}$	[7]	-	±0.5	±2.5	μΑ
		suspend mode B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = 0 \text{ V}$; $V_{CC(B)} = 3.6 \text{ V}$	<u>[7]</u>	-	±0.5	±2.5	μΑ
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V		-	±0.1	±1	μΑ
		B port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V		-	±0.1	±1	μΑ
Cı	input capacitance	nDIR, n \overline{OE} input; V _I = 0 V or 3.3 V; V _{CC(A)} = V _{CC(B)} = 3.3 V		-	2.0	-	pF
C _{I/O}	input/output capacitance	A and B port; $V_O = 3.3 \text{ V or } 0 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$		-	4.0	-	pF

^[1] V_{CCO} is the supply voltage associated with the output port.

- [5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.
- [6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter IOZ includes the input leakage current.

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.

^[4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.

Table 7. Static characteristics [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C te	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	Ī
V _{IH}	HIGH-level	data input					
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	٧
		V _{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	٧
		V _{CCI} = 3.0 V to 3.6 V	2	-	2	-	٧
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	٧
		V _{CC(A)} = 1.1 V to 1.95 V	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	٧
		V _{CC(A)} = 2.3 V to 2.7 V	1.6	-	1.6	-	٧
		V _{CC(A)} = 3.0 V to 3.6 V	2	-	2	-	V
V _{IL}	LOW-level	data input				Max CCI - C	
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-		V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-		V
		V _{CCI} = 2.3 V to 2.7 V	-	0.7	-		V
		V _{CCI} = 3.0 V to 3.6 V	-	0.8	-		V
		nDIR, nOE input					
		V _{CC(A)} = 0.8 V	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	٧
		V _{CC(A)} = 1.1 V to 1.95 V	-	0.35V _{CC(A)}	-	` ,	V
		V _{CC(A)} = 2.3 V to 2.7 V	-	0.7	-	+	V
		V _{CC(A)} = 3.0 V to 3.6 V	-	0.8	-	0.30V _{CCI} 0.35V _{CC(A)} 0.35V _{CC(A)} 0.7 0.8 0.30V _{CC(A)} 0.7 0.8 1 0.1 0.25 0.35 0.45 0.7	V
V _{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_{O} = -100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_O = -3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	٧
		$I_O = -6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	Max	٧
		$I_{O} = -8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	1.2		V
		$I_{O} = -9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	1.75		V
		$I_{O} = -12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3		V
V _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_O = 100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \text{ to } 3.6 \ V$	-	0.1	-	0.1	V
		I _O = 3 mA; V _{CC(A)} = V _{CC(B)} = 1.1 V	-	0.25	-	0.25	٧
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	0.35	-	0.35	٧
		I _O = 8 mA; V _{CC(A)} = V _{CC(B)} = 1.65 V	-	0.45	-	0.45	٧
		$I_O = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	0.55	-	0.55	٧
		$I_O = 12 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	0.7	-	0.7	٧
I _I	input leakage current	nDIR, n \overline{OE} input; V _I = 0 V or 3.6 V; V _{CC(A)} = V _{CC(B)} = 0.8 V to 3.6 V	-	±1	-	±5	μА

Table 7. Static characteristics ...continued [1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions		–40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
				Min	Max	Min	Max	
I _{BHL}	bus hold	A or B port	[3]					
	LOW current	$V_I = 0.49 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		15	-	15	-	μΑ
		$V_{I} = 0.58 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$		25	-	25	-	μΑ
		$V_{I} = 0.70 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		45	-	45	-	μΑ
		$V_{I} = 0.80 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		100	-	90	-	μΑ
I _{BHH}	bus hold	A or B port	<u>[4]</u>					
	HIGH current	$V_I = 0.91 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$		-15	-	-15	-	μΑ
	$V_{I} = 1.07 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$		-25	-	-25	-	μА	
		$V_I = 1.60 \text{ V}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$		-45	-	-45	-	μΑ
		$V_{I} = 2.00 \text{ V}; V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$		-100	-	-100	-	μΑ
I _{BHLO}		A or B port	[5]					
	LOW	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$		125	-	125	-	μΑ
	overdrive current	V _{CC(A)} = V _{CC(B)} = 1.95 V		200	-	200	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		300	-	300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		500	-	500	-	μΑ
I _{BHHO}	bus hold	A or B port	[6]					
	HIGH overdrive	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$		-125	-	-125	-	μΑ
	current	V _{CC(A)} = V _{CC(B)} = 1.95 V		-200	-	-200	- h	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$		-300	-	-300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$		-500	-	-500	-	μΑ
l _{OZ}	OFF-state output	A or B port; $V_O = 0 \text{ V or } V_{CCO}$; $V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	[7]	-	±5	-	±30	μА
	current	suspend mode A port; $V_O = 0 \text{ V or } V_{CC(A)} = 3.6 \text{ V};$ $V_{CC(B)} = 0 \text{ V}$	[7]	-	±5	-	±30	μА
		suspend mode B port; $V_O = 0 \text{ V or } V_{CC(A)} = 0 \text{ V};$ $V_{CC(B)} = 3.6 \text{ V}$	[7]	-	±5	-	±30	μА
I _{OFF}	power-off leakage	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V		-	±5	-	±30	μΑ
	current	B port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V		-	±5	-	±30	μΑ

Table 7. Static characteristics ... continue o[1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C t	o +85 °C	-40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{CC}	supply	A port; $V_I = 0 \text{ V or } V_{CCI}$; $I_O = 0 \text{ A}$					
	current	$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	45	-	190	μА
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	35	-	140	μА
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	35	-	140	μΑ
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-5	-	-20	-	μΑ
		B port; $V_I = 0 V \text{ or } V_{CCI}$; $I_O = 0 A$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	45	-	190	μА
		$V_{CC(A)} = 1.1 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 1.1 \text{ V to } 3.6 \text{ V}$	-	35	-	140	μА
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	– 5	-	-20	-	μΑ
		$V_{CC(A)} = 0 \text{ V}; V_{CC(B)} = 3.6 \text{ V}$	-	35	-	140	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	80	-	270	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 1.1$ V to 3.6 V; $V_{CC(B)} = 1.1$ V to 3.6 V	-	65	-	220	μΑ

- [1] V_{CCO} is the supply voltage associated with the output port.
- [2] V_{CCI} is the supply voltage associated with the data input port.
- [3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.
- [4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.
- [5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.
- [6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.
- [7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Table 8. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

V _{CC(A)}				V _{CC(B)}				Unit
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ
0.8 V	0.1	0.1	0.1	0.1	0.1	0.3	1.6	μΑ
1.2 V	0.1	0.1	0.1	0.1	0.1	0.1	0.8	μΑ
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.4	μΑ
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.2	μΑ
2.5 V	0.1	0.3	0.1	0.1	0.1	0.1	0.1	μΑ
3.3 V	0.1	1.6	0.8	0.4	0.2	0.1	0.1	μΑ

74AVCH20T245

All information provided in this document is subject to legal disclaimers.

10. Dynamic characteristics

Table 9. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25$ °C [1][2] Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} =	V _{CC(B)}			Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C _{PD}	power dissipation capacitance	A port: (direction A to B); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction A to B); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		A port: (direction B to A); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		A port: (direction B to A); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction A to B); output enabled	9.5	9.7	9.8	9.9	10.7	11.9	pF
		B port: (direction A to B); output disabled	0.6	0.6	0.6	0.6	0.7	0.7	pF
		B port: (direction B to A); output enabled	0.2	0.2	0.2	0.2	0.3	0.4	pF
		B port: (direction B to A); output disabled	0.2	0.2	0.2	0.2	0.3	0.4	pF

[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz;

 $f_o = output frequency in MHz;$

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L\times V_{CC}{}^2\times f_o)$ = sum of the outputs.

[2] f_i = 10 MHz; V_I = GND to V_{CC} ; t_r = t_f = 1 ns; C_L = 0 pF; R_L = ∞ Ω .

Table 10. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 ^{\circ}\text{C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

Symbol	Parameter	Conditions	V _{CC(B)}						
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	propagation delay	nAn to nBn	14.4	7.0	6.2	6.0	5.9	6.0	ns
		nBn to nAn	14.4	12.4	12.1	11.9	11.8	11.8	ns
t _{dis}	disable time	nOE to nAn	16.2	16.2	16.2	16.2	16.2	16.2	ns
		nOE to nBn	17.6	10.0	9.0	9.1	8.7	9.3	ns
t _{en}	enable time	nOE to nAn	21.9	21.9	21.9	21.9	21.9	21.9	ns
		nOE to nBn	22.2	11.1	9.8	9.4	9.4	9.6	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 11. Typical dynamic characteristics at $V_{CC(B)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ °C } \boxed{11}$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

U		10				_			•	
Symbol	Parameter	Conditions	V _{CC(A)}							
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V		
t _{pd}	propagation delay	nAn to nBn	14.4	12.4	12.1	11.9	11.8	11.8	ns	
		nBn to nAn	14.4	7.0	6.2	6.0	5.9	6.0	ns	
t _{dis}	disable time	nOE to nAn	16.2	5.9	4.4	4.2	3.1	3.5	ns	
		nOE to nBn	17.6	14.2	13.7	13.6	13.3	13.1	ns	
t _{en}	enable time	nOE to nAn	21.9	6.4	4.4	3.5	2.6	2.3	ns	
		nOE to nBn	22.2	17.7	17.2	17.0	16.8	16.7	ns	

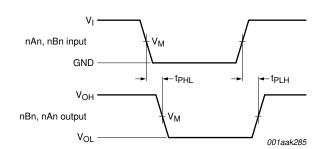
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

Table 12. Dynamic characteristics for temperature range -40 °C to +85 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6.

Symbol	Parameter	Conditions					V _C	C(B)					Unit
			1.2 V =	Ŀ 0.1 V	1.5 V :	Ŀ 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V												-1
t _{pd}	propagation	nAn to nBn	0.5	9.4	0.5	7.1	0.5	6.2	0.5	5.2	0.5	5.1	ns
	delay	nBn to nAn	0.5	9.4	0.5	8.9	0.5	8.7	0.5	8.4	0.5	8.2	ns
t _{dis}	disable time	nOE to nAn	2.0	11.9	2.0	11.9	2.0	11.9	2.0	11.9	2.0	11.9	ns
		nOE to nBn	1.5	12.7	1.5	9.8	1.5	9.6	1.0	8.1	1.0	9.0	ns
t _{en}	enable time	nOE to nAn	1.5	15.3	1.5	15.3	1.5	15.3	1.5	15.3	1.5	15.3	ns
		nOE to nBn	1.0	15.6	1.0	11.5	1.0	10.0	0.5	8.4	0.5	8.0	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.5	8.9	0.5	6.4	0.5	5.4	0.5	4.3	0.5	3.9	ns
	delay	nBn to nAn	0.5	7.1	0.5	6.4	0.5	6.1	0.5	5.8	0.5	5.7	ns
t _{dis}	disable time	nOE to nAn	2.0	9.0	2.0	9.0	2.0	9.0	2.0	9.0	2.0	9.0	ns
		nOE to nBn	1.5	11.7	1.5	9.0	1.5	7.8	1.0	6.4	1.0	6.0	ns
t _{en}	enable time	nOE to nAn	1.5	10.3	1.5	10.3	1.5	10.3	1.5	10.2	1.5	10.2	ns
		nOE to nBn	1.0	14.3	1.0	10.3	1.0	8.4	0.5	6.1	0.5	5.3	ns
V _{CC(A)} =	1.65 V to 1.95	V											
propagation	nAn to nBn	0.5	8.7	0.5	6.1	0.5	5.0	0.5	3.9	0.5	3.5	ns	
	delay	nBn to nAn	0.5	6.2	0.5	5.4	0.5	5.0	0.5	4.7	0.5	4.6	ns
t _{dis}	disable time	nOE to nAn	2.0	7.4	2.0	7.4	2.0	7.4	2.0	7.4	2.0	7.4	ns
		nOE to nBn	1.5	11.3	1.5	8.7	1.5	7.4	1.0	5.8	1.0	5.6	ns
t _{en}	enable time	nOE to nAn	1.0	8.1	1.0	8.1	1.0	7.9	1.0	7.9	1.0	7.9	ns
		nOE to nBn	0.5	13.8	0.5	10.0	0.5	7.9	0.5	5.7	0.5	4.8	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.5	8.4	0.5	5.8	0.5	4.7	0.5	3.5	0.5	3.0	ns
	delay	nBn to nAn	0.5	5.2	0.5	4.3	0.5	3.9	0.5	3.5	0.5	3.4	ns
t _{dis}	disable time	nOE to nAn	1.1	5.2	1.1	5.2	1.1	5.2	1.1	5.2	1.1	5.2	ns
		nOE to nBn	1.2	10.8	1.2	8.2	1.2	6.9	1.0	5.3	1.0	5.2	ns
t _{en}	enable time	nOE to nAn	0.5	5.4	0.5	5.4	0.5	5.3	0.5	5.2	0.5	5.2	ns
		nOE to nBn	0.5	13.3	0.5	9.6	0.5	7.6	0.5	5.3	0.5	4.3	ns
V _{CC(A)} =	3.0 V to 3.6 V												
t _{pd}	propagation	nAn to nBn	0.5	8.2	0.5	5.7	0.5	4.6	0.5	3.4	0.5	2.9	ns
	delay	nBn to nAn	0.5	5.1	0.5	3.9	0.5	3.5	0.5	3.0	0.5	2.9	ns
t _{dis}	disable time	nOE to nAn	0.8	5.0	0.8	5.0	0.8	5.0	0.8	5.0	0.8	5.0	ns
		nOE to nBn	1.2	10.5	1.2	8.1	1.2	6.7	1.0	5.1	0.8	5.0	ns
t _{en}	enable time	nOE to nAn	0.5	4.4	0.5	4.4	0.5	4.3	0.5	4.2	0.5	4.1	ns
		nOE to nBn	1.0	13.1	1.0	9.6	0.5	7.5	0.5	5.1	0.5	4.1	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .


Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 7; for wave forms see Figure 5 and Figure 6

Symbol	Parameter	Conditions					V _C	C(B)					Unit
			1.2 V	Ŀ 0.1 V	1.5 V :	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V :	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)} =	1.1 V to 1.3 V												
t _{pd}	propagation	nAn to nBn	0.5	10.4	0.5	7.9	0.5	6.9	0.5	5.8	0.5	5.7	ns
•	delay	nBn to nAn	0.5	10.4	0.5	9.8	0.5	9.6	0.5	9.3	0.5	9.1	ns
t _{dis}	disable time	nOE to nAn	2.0	13.1	2.0	13.1	2.0	13.1	2.0	13.1	2.0	13.1	ns
		nOE to nBn	1.5	14.0	1.5	10.8	1.5	10.6	1.0	9.0	1.0	9.9	ns
t _{en}	enable time	nOE to nAn	1.5	16.9	1.5	16.9	1.5	16.9	1.5	16.9	1.5	16.9	ns
		nOE to nBn	1.0	17.2	1.0	12.7	1.0	11.0	0.5	9.3	0.5	8.8	ns
V _{CC(A)} =	1.4 V to 1.6 V												
t _{pd}	propagation	nAn to nBn	0.5	9.8	0.5	7.1	0.5	6.0	0.5	4.8	0.5	4.3	ns
•	delay	nBn to nAn	0.5	7.9	0.5	7.1	0.5	6.8	0.5	6.4	0.5	6.3	ns
t _{dis}	disable time	nOE to nAn	2.0	9.9	2.0	9.9	2.0	9.9	2.0	9.9	2.0	9.9	ns
		nOE to nBn	1.5	12.9	1.5	9.9	1.5	8.6	1.0	7.1	1.0	6.6	ns
t _{en}	enable time	nOE to nAn	1.5	11.4	1.5	11.4	1.5	11.4	1.5	11.3	1.5	11.3	ns
		nOE to nBn	1.0	15.8	1.0	11.4	1.0	9.3	0.5	6.8	0.5	5.9	ns
V _{CC(A)} =	1.65 V to 1.95	V						1					_
t _{pd} propagation	nAn to nBn	0.5	9.6	0.5	6.8	0.5	5.5	0.5	4.3	0.5	3.9	ns	
	delay	nBn to nAn	0.5	6.9	0.5	6.0	0.5	5.5	0.5	5.2	0.5	5.1	ns
t _{dis}	disable time	nOE to nAn	2.0	8.2	2.0	8.2	2.0	8.2	2.0	8.2	2.0	8.2	ns
		nOE to nBn	1.5	12.5	1.5	9.6	1.5	8.2	1.0	6.4	1.0	6.2	ns
t _{en}	enable time	nOE to nAn	1.0	9.0	1.0	9.0	1.0	8.7	1.0	8.7	1.0	8.7	ns
		nOE to nBn	0.5	15.2	0.5	11.0	0.5	8.7	0.5	6.3	0.5	5.3	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	nAn to nBn	0.5	9.3	0.5	6.4	0.5	5.2	0.5	3.9	0.5	3.3	ns
	delay	nBn to nAn	0.5	5.8	0.5	4.8	0.5	4.3	0.5	3.9	0.5	3.8	ns
t _{dis}	disable time	nOE to nAn	1.1	5.8	1.1	5.8	1.1	5.8	1.1	5.8	1.1	5.8	ns
		nOE to nBn	1.2	11.9	1.2	9.1	1.2	7.6	1.0	5.9	1.0	5.8	ns
t _{en}	enable time	nOE to nAn	0.5	6.0	0.5	6.0	0.5	5.9	0.5	5.8	0.5	5.8	ns
		nOE to nBn	0.5	14.7	0.5	10.6	0.5	8.4	0.5	5.9	0.5	4.8	ns
V _{CC(A)} =	3.0 V to 3.6 V												
t _{pd}	propagation	nAn to nBn	0.5	9.1	0.5	6.3	0.5	5.1	0.5	3.8	0.5	3.2	ns
	delay	nBn to nAn	0.5	5.7	0.5	4.3	0.5	3.9	0.5	3.3	0.5	3.2	ns
t _{dis}	disable time	nOE to nAn	0.8	5.5	0.8	5.5	0.8	5.5	0.8	5.5	0.8	5.5	ns
		nOE to nBn	1.2	11.6	1.2	9.0	1.2	7.4	1.0	5.7	0.8	5.5	ns
t _{en}	enable time	nOE to nAn	0.5	4.9	0.5	4.9	0.5	4.8	0.5	4.7	0.5	4.6	ns
		nOE to nBn	1.0	14.5	1.0	10.6	0.5	8.3	0.5	5.7	0.5	4.6	ns

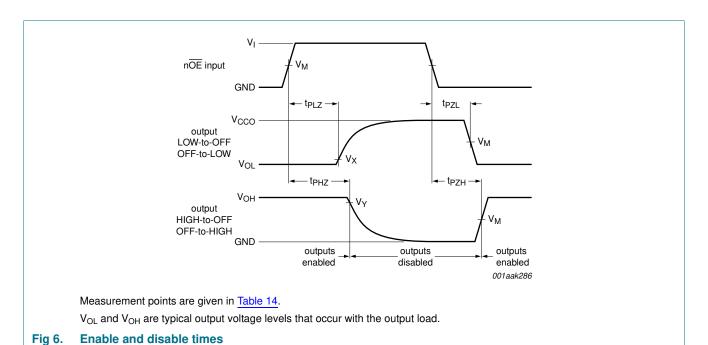
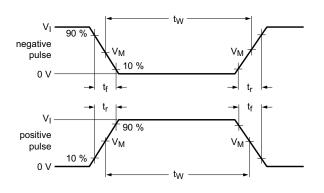
^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} .

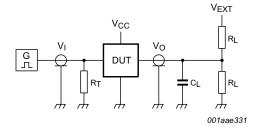
11. Waveforms

Measurement points are given in Table 14.

 V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.

Fig 5. The data input (nAn, nBn) to output (nBn, nAn) propagation delay times


Table 14. Measurement points

Supply voltage	Input ^[1]	Output ^[2]							
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y					
0.8 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	V _{OH} – 0.1 V					
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V					
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V					

- [1] V_{CCI} is the supply voltage associated with the data input port.
- [2] V_{CCO} is the supply voltage associated with the output port.

74AVCH20T245

Test data is given in Table 15.

 R_L = Load resistance.

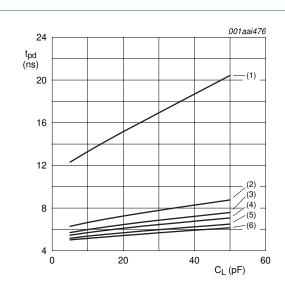
 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

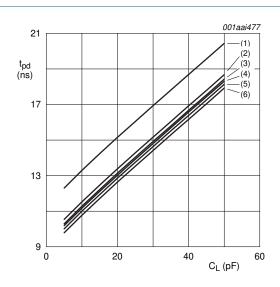
 V_{EXT} = External voltage for measuring switching times.

Fig 7. Test circuit for measuring switching times

Table 15. Test data

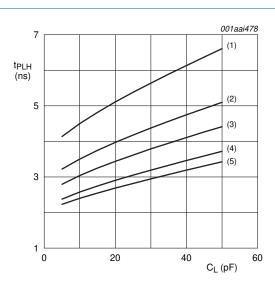

Supply voltage	Input		Load		V _{EXT}			
$V_{CC(A)}, V_{CC(B)}$	V _I [1]	Δt/ΔV[2]	CL	R _L	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]	
0.8 V to 1.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
1.65 V to 2.7 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	
3.0 V to 3.6 V	V _{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}	

[1] V_{CCI} is the supply voltage associated with the data input port.

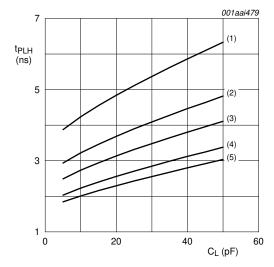

[2] $dV/dt \ge 1.0 V/ns$

[3] V_{CCO} is the supply voltage associated with the output port.

12. Typical propagation delay characteristics



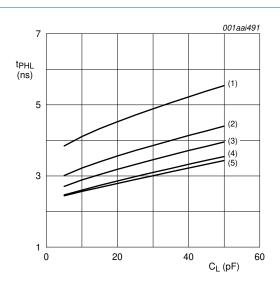
- a. Propagation delay (A to B); $V_{CC(A)} = 0.8 \text{ V}$
- (1) $V_{CC(B)} = 0.8 \text{ V}.$
- (2) $V_{CC(B)} = 1.2 \text{ V}.$
- (3) $V_{CC(B)} = 1.5 \text{ V}.$
- (4) $V_{CC(B)} = 1.8 \text{ V}.$
- (5) $V_{CC(B)} = 2.5 \text{ V}.$
- (6) $V_{CC(B)} = 3.3 \text{ V}.$



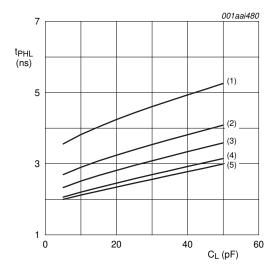
- b. Propagation delay (A to B); $V_{CC(B)} = 0.8 \text{ V}$
- (1) $V_{CC(A)} = 0.8 \text{ V}.$
- (2) $V_{CC(A)} = 1.2 \text{ V}.$
- (3) $V_{CC(A)} = 1.5 \text{ V}.$
- (4) $V_{CC(A)} = 1.8 \text{ V}.$
- (5) $V_{CC(A)} = 2.5 \text{ V}.$
- (6) $V_{CC(A)} = 3.3 \text{ V}.$

Fig 8. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

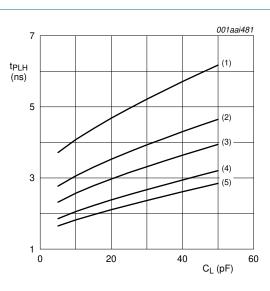
a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.2 \text{ V}$

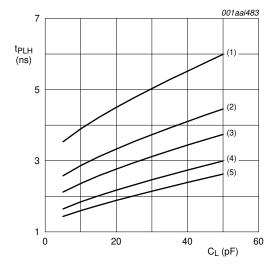


c. LOW to HIGH propagation delay (A to B); $V_{\text{CC}(A)} = 1.5 \text{ V}$

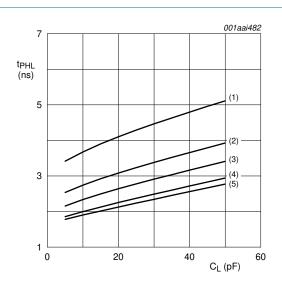


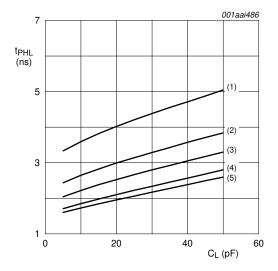
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$



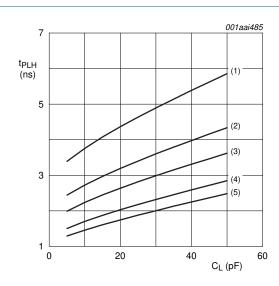

b. HIGH to LOW propagation delay (A to B); $V_{\text{CC}(A)} = 1.2 \text{ V}$

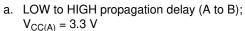
d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.5 \text{ V}$


a. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$


c. LOW to HIGH propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$

- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$




b. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 1.8 \text{ V}$

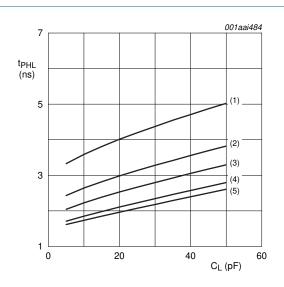
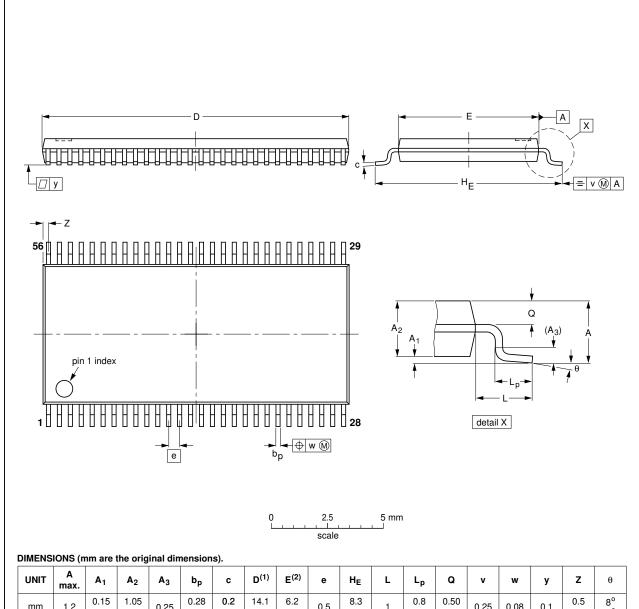

d. HIGH to LOW propagation delay (A to B); $V_{CC(A)} = 2.5 \text{ V}$

Fig 10. Typical propagation delay versus load capacitance; T_{amb} = 25 °C

- (1) $V_{CC(B)} = 1.2 \text{ V}.$
- (2) $V_{CC(B)} = 1.5 \text{ V}.$
- (3) $V_{CC(B)} = 1.8 \text{ V}.$
- (4) $V_{CC(B)} = 2.5 \text{ V}.$
- (5) $V_{CC(B)} = 3.3 \text{ V}.$


b. HIGH to LOW propagation delay (A to B); $V_{\text{CC}(A)} = 3.3 \text{ V}$

13. Package outline

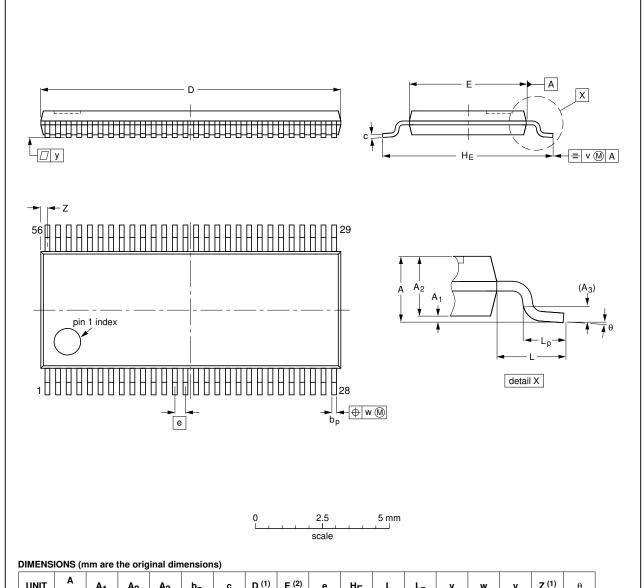
TSSOP56: plastic thin shrink small outline package; 56 leads; body width 6.1 mm

SOT364-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	z	θ
mm	1.2	0.15 0.05	1.05 0.85	0.25	0.28 0.17	0.2 0.1	14.1 13.9	6.2 6.0	0.5	8.3 7.9	1	0.8 0.4	0.50 0.35	0.25	0.08	0.1	0.5 0.1	8° 0°

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE	
VERSION	IEC	JEDEC	JEITA	PROJECTION	ISSUE DATE
SOT364-1		MO-153			-99-12-27 03-02-19


Fig 12. Package outline SOT364-1 (TSSOP56)

74AVCH20T245

All information provided in this document is subject to legal disclaimers.

TSSOP56: plastic thin shrink small outline package; 56 leads; body width 4.4 mm

SOT481-2

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D (1)	E (2)	е	HE	L	Lp	v	w	у	Z ⁽¹⁾	θ
mm	1.2	0.15 0.05	1.05 0.80	0.25	0.23 0.13	0.20 0.09	11.4 11.2	4.5 4.3	0.4	6.6 6.2	1	0.75 0.45	0.2	0.07	0.08	0.4 0.1	8° 0°

Notes

- 1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
- 2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE						ISSUE DATE	
VERSION	IEC	JEDEC	JEITA		PROJECTION	ISSUE DATE	
SOT481-2		MO-194			$ \ \ \bigoplus \big($	01-11-24	

Fig 13. Package outline SOT481-2 (TSSOP56)

74AVCH20T245

All information provided in this document is subject to legal disclaimers.

© Nexperia B.V. 2017. All rights reserve

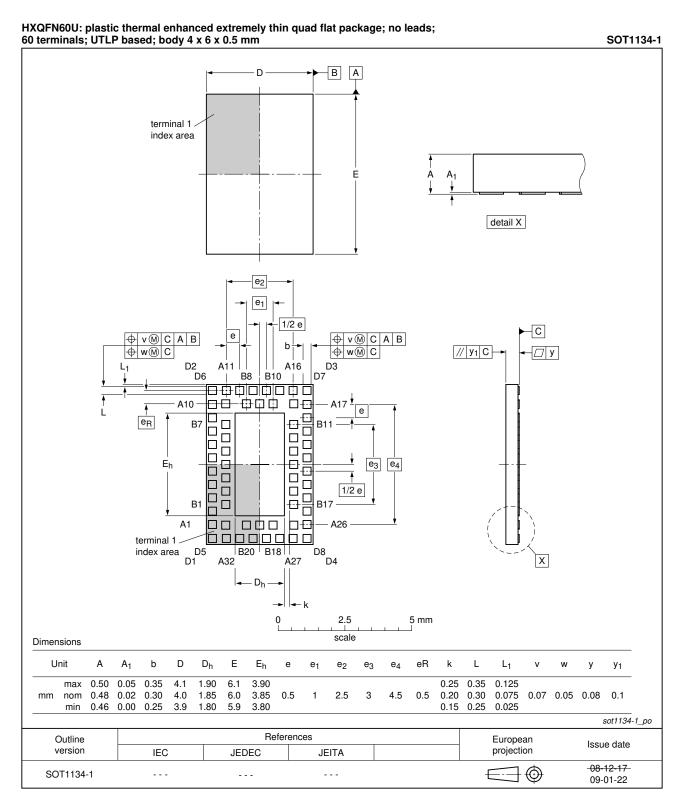


Fig 14. Package outline SOT1134-1 (HXQFN60U)

74AVCH20T245

All information provided in this document is subject to legal disclaimers.

14. Abbreviations

Table 16. Abbreviations

Acronym	Description
CDM	Charged Device Model
CMOS	Complementary Metal Oxide Semiconductor
DUT	Device Under Test
ESD	ElectroStatic Discharge
HBM	Human Body Model
MM	Machine Model

15. Revision history

Table 17. Revision history

Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVCH20T245 v.5	20160223	Product data sheet	-	74AVCH20T245 v.4
Modifications:	General de	escription updated.	·	
74AVCH20T245 v.4	20111214	Product data sheet	-	74AVCH20T245 v.3
Modifications:	Legal page	es updated.		
74AVCH20T245 v.3	20110623	Product data sheet	-	74AVCH20T245 v.2
74AVCH20T245 v.2	20100315	Product data sheet	-	74AVCH20T245 v.1
74AVCH20T245 v.1	20100113	Product data sheet	-	-