

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Rev. 6 — 2 April 2013

Product data sheet

1. General description

The 74AVCH2T45 is a dual bit, dual supply transceiver that enables bidirectional level translation. It features two data input-output ports (nA and nB), a direction control input (DIR) and dual supply pins ($V_{CC(A)}$ and $V_{CC(B)}$). Both $V_{CC(A)}$ and $V_{CC(B)}$ can be supplied at any voltage between 0.8 V and 3.6 V making the device suitable for translating between any of the low voltage nodes (0.8 V, 1.2 V, 1.5 V, 1.8 V, 2.5 V and 3.3 V). Pins nA and DIR are referenced to $V_{CC(A)}$ and pins nB are referenced to $V_{CC(B)}$. A HIGH on DIR allows transmission from nA to nB and a LOW on DIR allows transmission from nB to nA.

The device is fully specified for partial power-down applications using I_{OFF} . The I_{OFF} circuitry disables the output, preventing any damaging backflow current through the device when it is powered down. In suspend mode when either $V_{CC(A)}$ or $V_{CC(B)}$ are at GND level, both A and B are in the high-impedance OFF-state.

The 74AVCH2T45 has active bus hold circuitry which is provided to hold unused or floating data inputs at a valid logic level. This feature eliminates the need for external pull-up or pull-down resistors.

2. Features and benefits

- Wide supply voltage range:
 - ◆ V_{CC(A)}: 0.8 V to 3.6 V
 - ◆ V_{CC(B)}: 0.8 V to 3.6 V
- High noise immunity
- Complies with JEDEC standards:
 - ◆ JESD8-12 (0.8 V to 1.3 V)
 - ◆ JESD8-11 (0.9 V to 1.65 V)
 - ◆ JESD8-7 (1.2 V to 1.95 V)
 - ◆ JESD8-5 (1.8 V to 2.7 V)
 - ◆ JESD8-B (2.7 V to 3.6 V)
- ESD protection:
 - HBM JESD22-A114F Class 3B exceeds 8000 V
 - MM JESD22-A115-A exceeds 200 V
 - CDM JESD22-C101C exceeds 1000 V
- Maximum data rates:
 - ◆ 500 Mbps (1.8 V to 3.3 V translation)
 - ◆ 320 Mbps (< 1.8 V to 3.3 V translation)</p>
 - ◆ 320 Mbps (translate to 2.5 V or 1.8 V)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

- ◆ 280 Mbps (translate to 1.5 V)
- ◆ 240 Mbps (translate to 1.2 V)
- Suspend mode
- Bus hold on data inputs
- Latch-up performance exceeds 100 mA per JESD 78 Class II
- Inputs accept voltages up to 3.6 V
- Low noise overshoot and undershoot < 10 % of V_{CC}
- I_{OFF} circuitry provides partial Power-down mode operation
- Multiple package options
- Specified from -40 °C to +85 °C and -40 °C to +125 °C

3. Ordering information

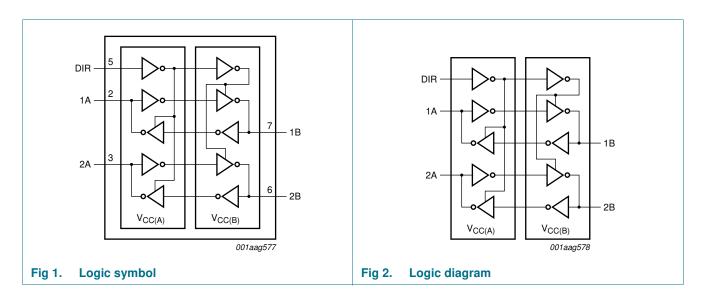
Table 1. Ordering information

Type number	Package			
	Temperature range	Name	Description	Version
74AVCH2T45DC	–40 °C to +125 °C	VSSOP8	plastic very thin shrink small outline package; 8 leads; body width 2.3 mm	SOT765-1
74AVCH2T45GT	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 1 \times 1.95 \times 0.5 mm	SOT833-1
74AVCH2T45GF	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body $1.35 \times 1 \times 0.5$ mm	SOT1089
74AVCH2T45GD	–40 °C to +125 °C	XSON8	plastic extremely thin small outline package; no leads; 8 terminals; body 3 \times 2 \times 0.5 mm	SOT996-2
74AVCH2T45GN	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.2 \times 1.0 \times 0.35 mm	SOT1116
74AVCH2T45GS	–40 °C to +125 °C	XSON8	extremely thin small outline package; no leads; 8 terminals; body 1.35 \times 1.0 \times 0.35 mm	SOT1203

4. Marking

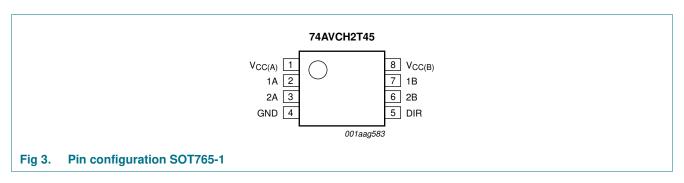
Table 2. Marking

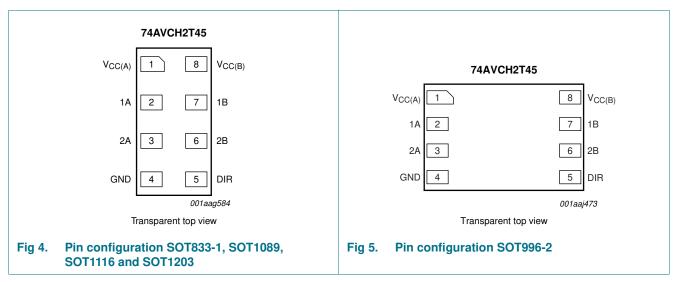
national marking	
Type number	Marking code ^[1]
74AVCH2T45DC	K45
74AVCH2T45GT	K45
74AVCH2T45GF	K5
74AVCH2T45GD	K45
74AVCH2T45GN	K5
74AVCH2T45GS	K5


^[1] The pin 1 indicator is located on the lower left corner of the device, below the marking code.

74AVCH2T45

Dual-bit, dual-supply voltage level translator/transceiver; 3-state


5. Functional diagram


NXP Semiconductors

6. Pinning information

6.1 Pinning

74AVCH2T45

All information provided in this document is subject to legal disclaimers.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

6.2 Pin description

Table 3. Pin description

Symbol	Pin	Description
$V_{CC(A)}$	1	supply voltage port A and DIR
1A	2	data input or output
2A	3	data input or output
GND	4	ground (0 V)
DIR	5	direction control
2B	6	data input or output
1B	7	data input or output
$V_{CC(B)}$	8	supply voltage port B

7. Functional description

Table 4. Function table[1]

Supply voltage	Input	Input/output[2]				
V _{CC(A)} , V _{CC(B)}	DIR[3]	nA	nB			
0.8 V to 3.6 V	L	nA = nB	input			
0.8 V to 3.6 V	Н	input	nB = nA			
GND[4]	X	Z	Z			

^[1] H = HIGH voltage level; L = LOW voltage level; X = don't care; Z = high-impedance OFF-state.

^[2] The input circuit of the data I/O is always active.

^[3] The DIR input circuit is referenced to $V_{CC(A)}$.

^[4] If at least one of $V_{CC(A)}$ or $V_{CC(B)}$ is at GND level, the device goes into suspend mode.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

8. Limiting values

Table 5. Limiting values

In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		-0.5	+4.6	V
$V_{CC(B)}$	supply voltage B		-0.5	+4.6	V
I _{IK}	input clamping current	$V_1 < 0 V$	-50	-	mA
VI	input voltage		<u>[1]</u> –0.5	+4.6	V
I _{OK}	output clamping current	V _O < 0 V	-50	-	mA
V_{O}	output voltage	Active mode	[1][2][3] -0.5	$V_{CCO} + 0.5$	V
		Suspend or 3-state mode	<u>[1]</u> –0.5	+4.6	V
Io	output current	$V_O = 0 V \text{ to } V_{CCO}$	-	±50	mA
I _{CC}	supply current	$I_{CC(A)}$ or $I_{CC(B)}$	-	100	mA
I_{GND}	ground current		-100	-	mA
T _{stg}	storage temperature		-65	+150	°C
P _{tot}	total power dissipation	$T_{amb} = -40 ^{\circ}\text{C} \text{ to } +125 ^{\circ}\text{C}$	<u>[4]</u> -	250	mW

^[1] The minimum input voltage rating and output voltage ratings may be exceeded if the input and output current ratings are observed.

9. Recommended operating conditions

Table 6. Recommended operating conditions

Symbol	Parameter	Conditions	Min	Max	Unit
$V_{CC(A)}$	supply voltage A		0.8	3.6	V
$V_{CC(B)}$	supply voltage B		0.8	3.6	V
VI	input voltage		0	3.6	V
V _O	output voltage	Active mode	<u>[1]</u> 0	V_{CCO}	V
		Suspend or 3-state mode	0	3.6	V
T _{amb}	ambient temperature		-40	+125	°C
$\Delta t/\Delta V$	input transition rise and fall rate	$V_{CCI} = 0.8 \text{ V}$ to 3.6 V	-	5	ns/V

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCO} is the supply voltage associated with the output port.

^[3] $V_{CCO} + 0.5 V$ should not exceed 4.6 V.

^[4] For VSSOP8 package: above 110 °C the value of P_{tot} derates linearly with 8 mW/K. For XSON8 packages: above 118 °C the value of P_{tot} derates linearly with 7.8 mW/K.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

10. Static characteristics

Table 7. Typical static characteristics at $T_{amb} = 25 \text{ °C}_{\frac{[1][2]}{2}}$

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	N	/ lin	Тур	Max	Unit
V_{OH}	HIGH-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		$I_{O} = -1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-		0.69	-	V
V_{OL}	LOW-level output voltage	$V_I = V_{IH}$ or V_{IL}					
		$I_O = 1.5 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V}$	-		0.07	-	V
l _I	input leakage current	DIR input; $V_I = 0 \text{ V or } 3.6 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-		±0.025	±0.25	μА
I _{BHL}	bus hold LOW current	$V_I = 0.42 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[3] _		26	-	μΑ
I _{BHH}	bus hold HIGH current	$V_{I} = 0.78 \text{ V}; V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[4] _		-24	-	μΑ
I _{BHLO}	bus hold LOW overdrive current	$V_I = GND$ to V_{CCI} ; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	<u>[5]</u> _		28	-	μА
I _{BHHO}	bus hold HIGH overdrive current	$V_I = GND$ to V_{CCI} ; $V_{CC(A)} = V_{CC(B)} = 1.2 \text{ V}$	[6] _		-26	-	μА
l _{OZ}	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ V to 3.6 V	[7] -		±0.5	±2.5	μА
I _{OFF}	power-off leakage current	A port; V_1 or $V_0 = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-		±0.1	±1	μА
		B port; V_I or $V_O = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-		±0.1	±1	μА
Cı	input capacitance	DIR input; $V_I = 0 \text{ V or } 3.3 \text{ V}$; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-		1.0	-	pF
C _{I/O}	input/output capacitance	A and B port; Suspend mode; $V_O = V_{CCO}$ or GND; $V_{CC(A)} = V_{CC(B)} = 3.3 \text{ V}$	-		4.0	-	pF

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.

^[4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.

^[5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.

^[6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.

^[7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 8. Static characteristics [1][2]
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C t	o +85 °C	–40 °C to	Unit	
			Min	Max	Min	Max	
V_{IH}	HIGH-level	data input	'		1		
	input voltage	V _{CCI} = 0.8 V	0.70V _{CCI}	-	0.70V _{CCI}	-	V
		V _{CCI} = 1.1 V to 1.95 V	0.65V _{CCI}	-	0.65V _{CCI}	-	V
		V_{CCI} = 2.3 V to 2.7 V	1.6	-	1.6	-	V
		$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
		DIR input					
		$V_{CC(A)} = 0.8 \text{ V}$	0.70V _{CC(A)}	-	0.70V _{CC(A)}	-	V
		$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	0.65V _{CC(A)}	-	0.65V _{CC(A)}	-	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	1.6	-	1.6	-	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	2	-	2	-	V
V_{IL}	LOW-level	data input					
	input voltage	V _{CCI} = 0.8 V	-	0.30V _{CCI}	-	0.30V _{CCI}	V
		V _{CCI} = 1.1 V to 1.95 V	-	0.35V _{CCI}	-	0.35V _{CCI}	V
		V_{CCI} = 2.3 V to 2.7 V	-	0.7	-	0.7	V
		$V_{CCI} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.9	-	0.9	V
		DIR input					
		$V_{CC(A)} = 0.8 \text{ V}$	-	0.30V _{CC(A)}	-	0.30V _{CC(A)}	٧
		$V_{CC(A)} = 1.1 \text{ V to } 1.95 \text{ V}$	-	0.35V _{CC(A)}	-	0.35V _{CC(A)}	V
		$V_{CC(A)} = 2.3 \text{ V to } 2.7 \text{ V}$	-	0.7	-	0.7	V
		$V_{CC(A)} = 3.0 \text{ V to } 3.6 \text{ V}$	-	0.9	-	0.9	V
V_{OH}	HIGH-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_O = -100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \ to \ 3.6 \ V$	V _{CCO} - 0.1	-	V _{CCO} - 0.1	-	V
		$I_{O} = -3 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	0.85	-	0.85	-	V
		$I_{O} = -6 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	1.05	-	1.05	-	V
		$I_O = -8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	1.2	-	1.2	-	V
		$I_{O} = -9 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	1.75	-	1.75	-	V
		$I_O = -12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	2.3	-	2.3	-	V

Table 8. Static characteristics ...continued 11[2]
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °	C to +85 °C	–40 °C to	+125 °C	Uni
			Min	Max	Min	Max	
√ _{OL}	LOW-level	$V_I = V_{IH}$ or V_{IL}					
	output voltage	$I_{O} = 100 \ \mu A;$ $V_{CC(A)} = V_{CC(B)} = 0.8 \ V \ to \ 3.6 \ V$	-	0.1	-	0.1	V
		$I_O = 3 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.1 \text{ V}$	-	0.25	-	0.25	V
		$I_{O} = 6 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-	0.35	-	0.35	٧
		$I_{O} = 8 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-	0.45	-	0.45	V
		$I_O = 9 \text{ mA}; V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-	0.55	-	0.55	V
		$I_O = 12 \text{ mA};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-	0.7	-	0.7	V
I	input leakage current	DIR input; $V_I = 0 \text{ V or } 3.6 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	±1	-	±1.5	μ A
BHL	bus hold LOW current	A or B port	[3]				
		$V_{I} = 0.49 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	15	-	15	-	μΑ
		$V_{I} = 0.58 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	25	-	25	-	μΑ
		$V_{I} = 0.70 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	45	-	45	-	μΑ
		$V_{I} = 0.80 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	100	-	90	-	μΑ
ВНН	bus hold HIGH current	A or B port	<u>[4]</u>				
		$V_{I} = 0.91 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.4 \text{ V}$	-15	-	-15	-	μΑ
		$V_{I} = 1.07 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 1.65 \text{ V}$	-25	-	-25	-	μΑ
		$V_{I} = 1.60 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 2.3 \text{ V}$	-45	-	-45	-	μΑ
		$V_{I} = 2.00 \text{ V};$ $V_{CC(A)} = V_{CC(B)} = 3.0 \text{ V}$	-100	-	-100	-	μΑ
BHLO	bus hold LOW	A or B port	<u>[5]</u>				
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$	125	-	125	-	μΑ
	carrent	$V_{CC(A)} = V_{CC(B)} = 1.95 \text{ V}$	200	-	200	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$	300	-	300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	500	-	500	-	μΑ
внно	bus hold HIGH	A or B port	[6]				
	overdrive current	$V_{CC(A)} = V_{CC(B)} = 1.6 \text{ V}$	-125	-	-125	-	μΑ
	Janon	$V_{CC(A)} = V_{CC(B)} = 1.95 \text{ V}$	-200	-	-200	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 2.7 \text{ V}$	-300	-	-300	-	μΑ
		$V_{CC(A)} = V_{CC(B)} = 3.6 \text{ V}$	-500	-	-500	-	μΑ
OZ	OFF-state output current	A or B port; $V_O = 0$ V or V_{CCO} ; $V_{CC(A)} = V_{CC(B)} = 0.8$ to 3.6 V	<u>[7]</u> _	±5	-	±7.5	μΑ

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 8. Static characteristics ... continue o[1][2]

At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions	–40 °C t	o +85 °C	–40 °C to	+125 °C	Unit
			Min	Max	Min	Max	
I _{OFF}	power-off leakage	A port; V_1 or $V_O = 0$ V to 3.6 V; $V_{CC(A)} = 0$ V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	±5	-	±35	μΑ
	current	B port; V_1 or $V_O = 0$ V to 3.6 V; $V_{CC(B)} = 0$ V; $V_{CC(A)} = 0.8$ V to 3.6 V	-	±5	-	±35	μΑ
I _{CC}	supply current	A port; $V_I = 0 V \text{ or } V_{CCI}$; $I_O = 0 A$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	8	-	11.5	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-	8	-	11.5	μΑ
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-2	-	-8	-	μΑ
		B port; $V_I = 0 V \text{ or } V_{CCI}$; $I_O = 0 A$					
		$V_{CC(A)} = 0.8 \text{ V to } 3.6 \text{ V};$ $V_{CC(B)} = 0.8 \text{ V to } 3.6 \text{ V}$	-	8	-	11.5	μΑ
		$V_{CC(A)} = 3.6 \text{ V}; V_{CC(B)} = 0 \text{ V}$	-2	-	-8	-	μΑ
		V _{CC(A)} = 0 V; V _{CC(B)} = 3.6 V	-	8	-	11.5	μΑ
		A plus B port ($I_{CC(A)} + I_{CC(B)}$); $I_O = 0$ A; $V_I = 0$ V or V_{CCI} ; $V_{CC(A)} = 0.8$ V to 3.6 V; $V_{CC(B)} = 0.8$ V to 3.6 V	-	16	-	23	μА

^[1] V_{CCO} is the supply voltage associated with the output port.

^[2] V_{CCI} is the supply voltage associated with the data input port.

^[3] The bus hold circuit can sink at least the minimum low sustaining current at V_{IL} max. I_{BHL} should be measured after lowering V_I to GND and then raising it to V_{IL} max.

^[4] The bus hold circuit can source at least the minimum high sustaining current at V_{IH} min. I_{BHH} should be measured after raising V_I to V_{CC} and then lowering it to V_{IH} min.

^[5] An external driver must source at least I_{BHLO} to switch this node from LOW to HIGH.

^[6] An external driver must sink at least I_{BHHO} to switch this node from HIGH to LOW.

^[7] For I/O ports, the parameter I_{OZ} includes the input leakage current.

11. Dynamic characteristics

Table 9. Typical dynamic characteristics at $V_{CC(A)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ °C } \square$

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	Parameter	Conditions			Vco	C(B)			Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	propagation delay	A to B	15.8	8.4	8.0	8.0	8.7	9.5	ns
		B to A	15.8	12.7	12.4	12.2	12.0	11.8	ns
t _{dis}	disable time	DIR to A	12.2	12.2	12.2	12.2	12.2	12.2	ns
		DIR to B	11.7	7.9	7.6	8.2	8.7	10.2	ns
t _{en}	enable time	DIR to A	27.5	20.6	20.0	20.4	20.7	22.0	ns
		DIR to B	28.0	20.6	20.2	20.2	20.9	21.7	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}; t_{en} is the same as t_{PZL} and t_{PZH}. t_{en} is a calculated value using the formula shown in Section 13.4 "Enable times"

Table 10. Typical dynamic characteristics at $V_{CC(B)} = 0.8 \text{ V}$ and $T_{amb} = 25 \text{ °C}$ [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbol	mbol Parameter Conditions V _{CC(A)}							Unit	
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
t _{pd}	propagation delay	A to B	15.8	12.7	12.4	12.2	12.0	11.8	ns
		B to A	15.8	8.4	8.0	8.0	8.7	9.5	ns
t _{dis}	disable time	DIR to A	12.2	4.9	3.8	3.7	2.8	3.4	ns
		DIR to B	11.7	9.2	9.0	8.8	8.7	8.6	ns
t _{en}	enable time	DIR to A	27.5	17.6	17.0	16.8	17.4	18.1	ns
		DIR to B	28.0	17.6	16.2	15.9	14.8	15.2	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL}; t_{dis} is the same as t_{PLZ} and t_{PHZ}; t_{en} is the same as t_{PZL} and t_{PZH}.
t_{en} is a calculated value using the formula shown in Section 13.4 "Enable times"

Table 11. Typical power dissipation capacitance at $V_{CC(A)} = V_{CC(B)}$ and $T_{amb} = 25 \, ^{\circ}C$ [1][2]

Voltages are referenced to GND (ground = 0 V).

Symbol	Parameter	Conditions			V _{CC(A)} ar	nd V _{CC(B)}			Unit
			0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V	
C_{PD}	power dissipation capacitance	A port: (direction A to B); B port: (direction B to A)	1	2	2	2	2	2	pF
		A port: (direction B to A); B port: (direction A to B)	9	11	11	12	14	17	pF

^[1] C_{PD} is used to determine the dynamic power dissipation (P_D in μW).

 $P_D = C_{PD} \times V_{CC}{}^2 \times f_i \times N + \Sigma (C_L \times V_{CC}{}^2 \times f_o) \text{ where:}$

f_i = input frequency in MHz;

 f_0 = output frequency in MHz;

C_L = load capacitance in pF;

V_{CC} = supply voltage in V;

N = number of inputs switching;

 $\Sigma(C_L \times V_{CC}^2 \times f_o)$ = sum of the outputs.

[2] $f_i = 10 \text{ MHz; } V_I = \text{GND to } V_{CC}; t_r = t_f = 1 \text{ ns; } C_L = 0 \text{ pF; } R_L = \infty \ \Omega.$

74AVCH2T45

All information provided in this document is subject to legal disclaimers.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 12. Dynamic characteristics for temperature range –40 °C to +85 °C [1]

Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7.

Symbol	Parameter	Conditions	V _{CC(B)}	. 0 4 1/	451	. 0 4 14	461/	0.45.11	0.5.\		0.0.17	. 0.034	Uni
				± 0.1 V		± 0.1 V		0.15 V		± 0.2 V		± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
$V_{CC(A)} =$	1.1 V to 1.3 V												
t _{pd}	propagation	A to B	1.0	9.0	0.7	6.8	0.6	6.1	0.5	5.7	0.5	6.1	ns
	delay	B to A	1.0	9.0	8.0	8.0	0.7	7.7	0.6	7.2	0.5	7.1	ns
t _{dis}	disable time	DIR to A	2.2	8.8	2.2	8.8	2.2	8.8	2.2	8.8	2.2	8.8	ns
		DIR to B	2.2	8.4	1.8	6.7	2.0	6.9	1.7	6.2	2.4	7.2	ns
t _{en}	enable time	DIR to A	-	17.4	-	14.7	-	14.6	-	13.4	-	14.3	ns
		DIR to B	-	17.8	-	15.6	-	14.9	-	14.5	-	14.9	ns
$V_{CC(A)} =$	1.4 V to 1.6 V												
t _{pd}	propagation	A to B	1.0	8.0	0.7	5.4	0.6	4.6	0.5	3.7	0.5	3.5	ns
	delay	B to A	1.0	6.8	8.0	5.4	0.7	5.1	0.6	4.7	0.5	4.5	ns
t _{dis}	disable time	DIR to A	1.6	6.3	1.6	6.3	1.6	6.3	1.6	6.3	1.6	6.3	ns
		DIR to B	2.0	7.6	1.8	5.9	1.6	6.0	1.2	4.8	1.7	5.5	ns
t _{en}	enable time	DIR to A	-	14.4	-	11.3	-	11.1	-	9.5	-	10.0	ns
		DIR to B	-	14.3	-	11.7	-	10.9	-	10.0	-	9.8	ns
V _{CC(A)} =	1.65 V to 1.95	V											
t _{pd}	propagation delay	A to B	1.0	7.7	0.6	5.1	0.5	4.3	0.5	3.4	0.5	3.1	ns
		B to A	1.0	6.1	0.7	4.6	0.5	4.4	0.5	3.9	0.5	3.7	ns
t _{dis}	disable time	DIR to A	1.6	5.5	1.6	5.5	1.6	5.5	1.6	5.5	1.6	5.5	ns
		DIR to B	1.8	7.8	1.8	5.7	1.4	5.8	1.0	4.5	1.5	5.2	ns
t _{en}	enable time	DIR to A	-	13.9	-	10.3	-	10.2	-	8.4	-	8.9	ns
		DIR to B	-	13.2	-	10.6	-	9.8	-	8.9	-	8.6	ns
V _{CC(A)} =	2.3 V to 2.7 V												
t _{pd}	propagation	A to B	1.0	7.2	0.5	4.7	0.5	3.9	0.5	3.0	0.5	2.6	ns
	delay	B to A	1.0	5.7	0.6	3.8	0.5	3.4	0.5	3.0	0.5	2.8	ns
t _{dis}	disable time	DIR to A	1.5	4.2	1.5	4.2	1.5	4.2	1.5	4.2	1.5	4.2	ns
		DIR to B	1.7	7.3	2.0	5.2	1.5	5.1	0.6	4.2	1.1	4.8	ns
t _{en}	enable time	DIR to A	-	13.0	-	9.0	-	8.5	-	7.2	-	7.6	ns
		DIR to B	-	11.4	-	8.9	-	8.1	-	7.2	-	6.8	ns
V _{CC(A)} =	3.0 V to 3.6 V												
t _{pd}	propagation	A to B	1.0	7.1	0.5	4.5	0.5	3.7	0.5	2.8	0.5	2.4	ns
	delay	B to A	1.0	6.1	0.6	3.6	0.5	3.1	0.5	2.6	0.5	2.4	ns
t _{dis}	disable time	DIR to A	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	ns
		DIR to B	1.7	7.2	0.7	5.5	0.6	5.5	0.7	4.1	1.7	4.7	ns
t _{en}	enable time	DIR to A	-	13.3	-	9.1	-	8.6	-	6.7	-	7.1	ns
ten eriable		DIR to B	-	11.8	-	9.2	-	8.4	-	7.5	-	7.1	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} . t_{en} is a calculated value using the formula shown in <u>Section 13.4 "Enable times"</u>

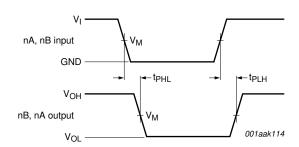
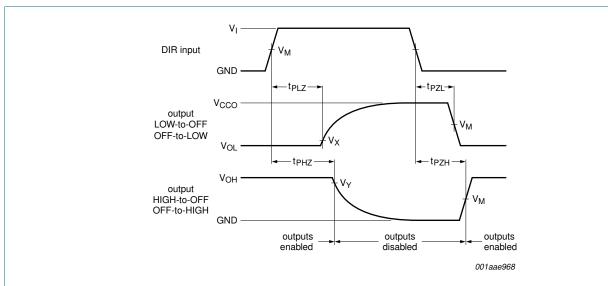

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

Table 13. Dynamic characteristics for temperature range –40 °C to +125 °C 11 Voltages are referenced to GND (ground = 0 V); for test circuit see Figure 8; for wave forms see Figure 6 and Figure 7

Symbo	l Parameter	Conditions	V _{CC(B)}										Unit
			1.2 V	± 0.1 V	1.5 V	± 0.1 V	1.8 V ±	0.15 V	2.5 V	± 0.2 V	3.3 V	± 0.3 V	
			Min	Max	Min	Max	Min	Max	Min	Max	Min	Max	
V _{CC(A)}	= 1.1 V to 1.3 V	•	'	'						'		•	
t _{pd}	propagation	A to B	1.0	9.9	0.7	7.5	0.6	6.8	0.5	6.3	0.5	6.8	ns
	delay	B to A	1.0	9.9	8.0	8.8	0.7	8.5	0.6	8.0	0.5	7.9	ns
t_{dis}	disable time	DIR to A	2.2	9.7	2.2	9.7	2.2	9.7	2.2	9.7	2.2	9.7	ns
		DIR to B	2.2	9.2	1.8	7.4	2.0	7.6	1.7	6.9	2.4	8.0	ns
t _{en}	enable time	DIR to A	-	19.1	-	16.2	-	16.1	-	14.9	-	15.9	ns
		DIR to B	-	19.6	-	17.2	-	16.5	-	16.0	-	16.5	ns
V _{CC(A)}	= 1.4 V to 1.6 V												
t _{pd} propagation	A to B	1.0	8.8	0.7	6.0	0.6	5.1	0.5	4.1	0.5	3.9	ns	
	delay	B to A	1.0	7.5	8.0	6.0	0.7	5.7	0.6	5.2	0.5	5.0	ns
t_{dis}	disable time	DIR to A	1.6	7.0	1.6	7.0	1.6	7.0	1.6	7.0	1.6	7.0	ns
		DIR to B	2.0	8.3	1.8	6.5	1.6	6.6	1.2	5.3	1.7	6.1	ns
t _{en}	enable time	DIR to A	-	15.8	-	12.5	-	12.3	-	10.5	-	11.1	ns
		DIR to B	-	15.8	-	13.0	-	12.7	-	11.1	-	10.9	ns
V _{CC(A)}	= 1.65 V to 1.95	V											
t_{pd}	propagation	A to B	1.0	8.5	0.6	5.7	0.5	4.8	0.5	3.8	0.5	3.5	ns
	delay	B to A	1.0	6.8	0.7	5.1	0.5	4.9	0.5	4.3	0.5	4.1	ns
t_{dis}	disable time	DIR to A	1.6	6.1	1.6	6.1	1.6	6.1	1.6	6.1	1.6	6.1	ns
		DIR to B	1.8	8.6	1.8	6.3	1.4	6.4	1.0	5.0	1.5	5.8	ns
t _{en}	enable time	DIR to A	-	15.4	-	11.4	-	11.3	-	9.3	-	9.9	ns
		DIR to B	-	14.6	-	11.8	-	10.9	-	9.9	-	9.6	ns
V _{CC(A)}	= 2.3 V to 2.7 V												
t_{pd}	propagation	A to B	1.0	8.0	0.5	5.2	0.5	4.3	0.5	3.3	0.5	2.9	ns
	delay	B to A	1.0	6.3	0.6	4.2	0.5	3.8	0.5	3.3	0.5	3.1	ns
t_{dis}	disable time	DIR to A	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	1.5	4.7	ns
		DIR to B	1.7	8.0	2.0	5.8	1.5	5.7	0.6	4.7	1.1	5.3	ns
t _{en}	enable time	DIR to A	-	14.3	-	10.0	-	9.5	-	8.0	-	8.4	ns
		DIR to B	-	12.7	-	9.9	-	9.0	-	8.0	-	7.6	ns
V _{CC(A)}	= 3.0 V to 3.6 V												
t_{pd}	propagation	A to B	1.0	7.9	0.5	5.0	0.5	4.1	0.5	3.1	0.5	2.7	ns
	delay	B to A	1.0	6.8	0.6	4.0	0.5	3.5	0.5	2.9	0.5	2.7	ns
t_{dis}	disable time	DIR to A	1.5	5.2	1.5	5.2	1.5	5.2	1.5	5.2	1.5	5.2	ns
		DIR to B	1.7	7.9	0.7	6.1	0.6	6.1	0.7	4.6	1.7	5.2	ns
t _{en}	enable time	DIR to A	-	14.7	-	10.1	-	9.6	-	7.5	-	7.9	ns
		DIR to B	-	13.1	-	10.2	-	9.3	-	8.3	-	7.9	ns

^[1] t_{pd} is the same as t_{PLH} and t_{PHL} ; t_{dis} is the same as t_{PLZ} and t_{PHZ} ; t_{en} is the same as t_{PZL} and t_{PZH} . t_{en} is a calculated value using the formula shown in <u>Section 13.4 "Enable times"</u>


12. Waveforms

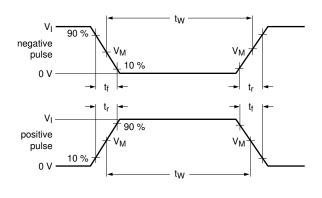
Measurement points are given in Table 14.

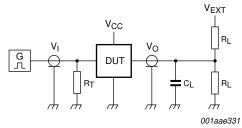
 $\ensuremath{V_{OL}}$ and $\ensuremath{V_{OH}}$ are typical output voltage levels that occur with the output load.

Fig 6. The data input (nA, nB) to output (nB, nA) propagation delay times

Measurement points are given in Table 14.

V_{OL} and V_{OH} are typical output voltage levels that occur with the output load.


Fig 7. Enable and disable times


Table 14. Measurement points

Supply voltage	Input[1]	Output[2]		
V _{CC(A)} , V _{CC(B)}	V _M	V _M	V _X	V _Y
1.1 V to 1.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.1 V	$V_{OH} - 0.1 V$
1.65 V to 2.7 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.15 V	V _{OH} – 0.15 V
3.0 V to 3.6 V	0.5V _{CCI}	0.5V _{CCO}	V _{OL} + 0.3 V	V _{OH} – 0.3 V

^[1] V_{CCI} is the supply voltage associated with the data input port.

^[2] V_{CCO} is the supply voltage associated with the output port.

Test data is given in Table 15.

 R_L = Load resistance.

 C_L = Load capacitance including jig and probe capacitance.

 R_T = Termination resistance.

 V_{EXT} = External voltage for measuring switching times.

Fig 8. Test circuit for measuring switching times

Table 15. Test data

Supply voltage	Input		Load		V _{EXT}	V _{EXT}			
V _{CC(A)} , V _{CC(B)}	V _I [1]	Δt/ΔV[2]	CL	RL	t _{PLH} , t _{PHL}	t _{PZH} , t _{PHZ}	t _{PZL} , t _{PLZ} [3]		
1.1 V to 1.6 V	V_{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		
1.65 V to 2.7 V	V_{CCI}	\leq 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		
3.0 V to 3.6 V	V_{CCI}	≤ 1.0 ns/V	15 pF	2 kΩ	open	GND	2V _{CCO}		

[1] V_{CCI} is the supply voltage associated with the data input port.

[2] dV/dt ≥ 1.0 V/ns

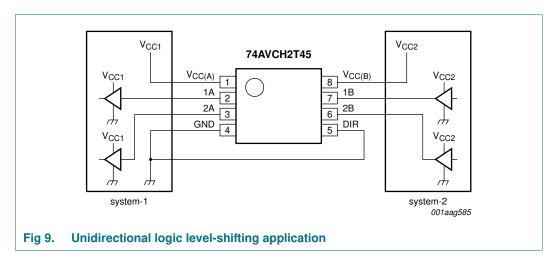
[3] V_{CCO} is the supply voltage associated with the output port.

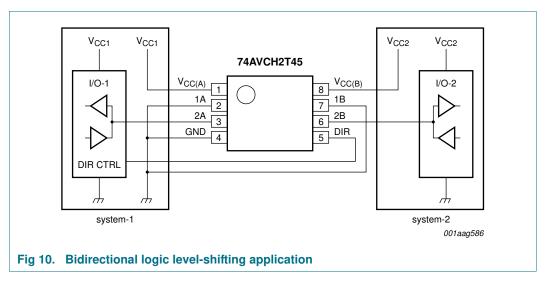
Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13. Application information

13.1 Unidirectional logic level-shifting application

The circuit given in Figure 9 is an example of the 74AVCH2T45 being used in an unidirectional logic level-shifting application.




Table 16. Unidirectional logic level-shifting application

Pin	Name	Function	Description
1	$V_{\text{CC}(A)}$	V_{CC1}	supply voltage of system-1 (0.8 V to 3.6 V)
2	1A	OUT1	output level depends on V _{CC1} voltage
3	2A	OUT2	output level depends on V _{CC1} voltage
4	GND	GND	device GND
5	DIR	DIR	the GND (LOW level) determines B port to A port direction
6	2B	IN2	input threshold value depends on V _{CC2} voltage
7	1B	IN1	input threshold value depends on V _{CC2} voltage
8	$V_{CC(B)}$	V_{CC2}	supply voltage of system-2 (0.8 V to 3.6 V)

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13.2 Bidirectional logic level-shifting application

<u>Figure 10</u> shows the 74AVCH2T45 being used in a bidirectional logic level-shifting application. Since the device does not have an output enable (OE) pin, the system designer should take precautions to avoid bus contention between system-1 and system-2 when changing directions.

<u>Table 17</u> gives a sequence that will illustrate data transmission from system-1 to system-2 and then from system-2 to system-1.

Table 17. Bidirectional logic level-shifting application[1]

State	DIR CTRL	I/O-1	I/O-2	Description
1	Н	output	input	system-1 data to system-2
2	Н	Z	Z	system-2 is getting ready to send data to system-1. I/O-1 and I/O-2 are disabled. The bus-line state depends on bus hold.
3	L	Z	Z	DIR bit is set LOW. I/O-1 and I/O-2 still are disabled. The bus-line state depends on bus hold.
4	L	input	output	system-2 data to system-1

^[1] H = HIGH voltage level;

L = LOW voltage level;

Z = high-impedance OFF-state.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

13.3 Power-up considerations

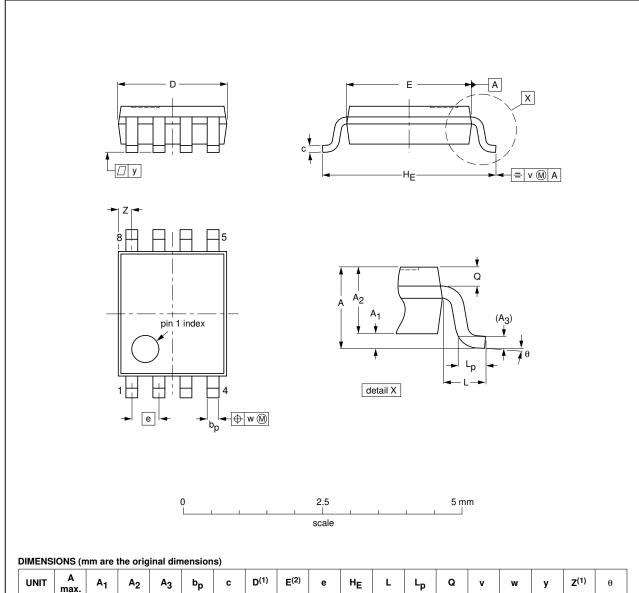
The device is designed such that no special power-up sequence is required other than GND being applied first.

Table 18. Typical total supply current $(I_{CC(A)} + I_{CC(B)})$

				. ,	· /							
V _{CC(A)}	V _{CC(B)}	V _{CC(B)}										
	0 V	0.8 V	1.2 V	1.5 V	1.8 V	2.5 V	3.3 V					
0 V	0	0.1	0.1	0.1	0.1	0.1	0.1	μΑ				
0.8 V	0.1	0.1	0.1	0.1	0.1	0.7	2.3	μΑ				
1.2 V	0.1	0.1	0.1	0.1	0.1	0.3	1.4	μΑ				
1.5 V	0.1	0.1	0.1	0.1	0.1	0.1	0.9	μΑ				
1.8 V	0.1	0.1	0.1	0.1	0.1	0.1	0.5	μΑ				
2.5 V	0.1	0.7	0.3	0.1	0.1	0.1	0.1	μΑ				
3.3 V	0.1	2.3	1.4	0.9	0.5	0.1	0.1	μΑ				

13.4 Enable times

The enable times for the 74AVCH2T45 are calculated from the following formulas:


- t_{en} (DIR to nA) = t_{dis} (DIR to nB) + t_{pd} (nB to nA)
- t_{en} (DIR to nB) = t_{dis} (DIR to nA) + t_{pd} (nA to nB)

In a bidirectional application, these enable times provide the maximum delay from the time the DIR bit is switched until an output is expected. For example, if the 74AVCH2T45 initially is transmitting from A to B, then the DIR bit is switched, the B port of the device must be disabled before presenting it with an input. After the B port has been disabled, an input signal applied to it appears on the corresponding A port after the specified propagation delay.

14. Package outline

VSSOP8: plastic very thin shrink small outline package; 8 leads; body width 2.3 mm

SOT765-1

UNIT	A max.	A ₁	A ₂	A ₃	bp	С	D ⁽¹⁾	E ⁽²⁾	е	HE	L	Lp	Q	v	w	у	Z ⁽¹⁾	θ	
mm	1	0.15 0.00	0.85 0.60	0.12	0.27 0.17	0.23 0.08	2.1 1.9	2.4 2.2	0.5	3.2 3.0	0.4	0.40 0.15	0.21 0.19	0.2	0.13	0.1	0.4 0.1	8° 0°	

- Plastic or metal protrusions of 0.15 mm maximum per side are not included.
 Plastic or metal protrusions of 0.25 mm maximum per side are not included.

OUTLINE		REFER	EUROPEAN	ISSUE DATE		
VERSION		JEDEC	JEITA	PROJECTION	ISSUE DATE	
SOT765-1		MO-187			02-06-07	

Fig 11. Package outline SOT765-1 (VSSOP8)

74AVCH2T45

All information provided in this document is subject to legal disclaimers.

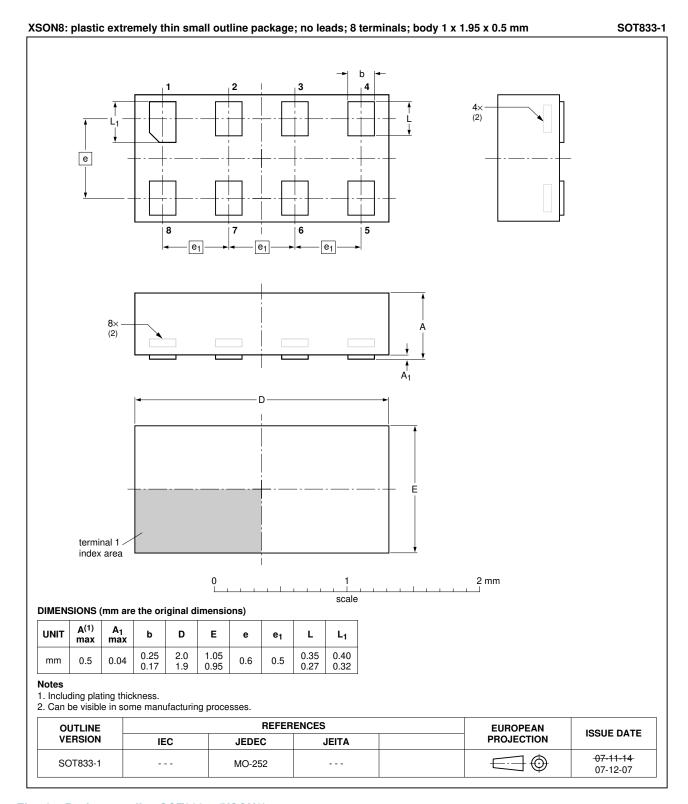


Fig 12. Package outline SOT833-1 (XSON8)

74AVCH2T45 All information provided in this document is subject to legal disclaimers.

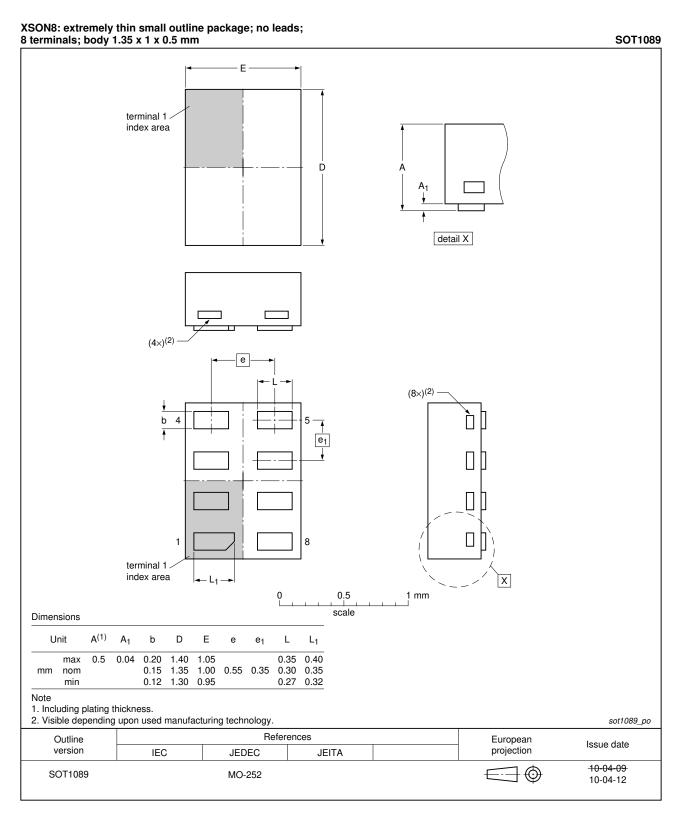


Fig 13. Package outline SOT1089 (XSON8)

74AVCH2T45 All information provided in this document is subject to legal disclaimers.

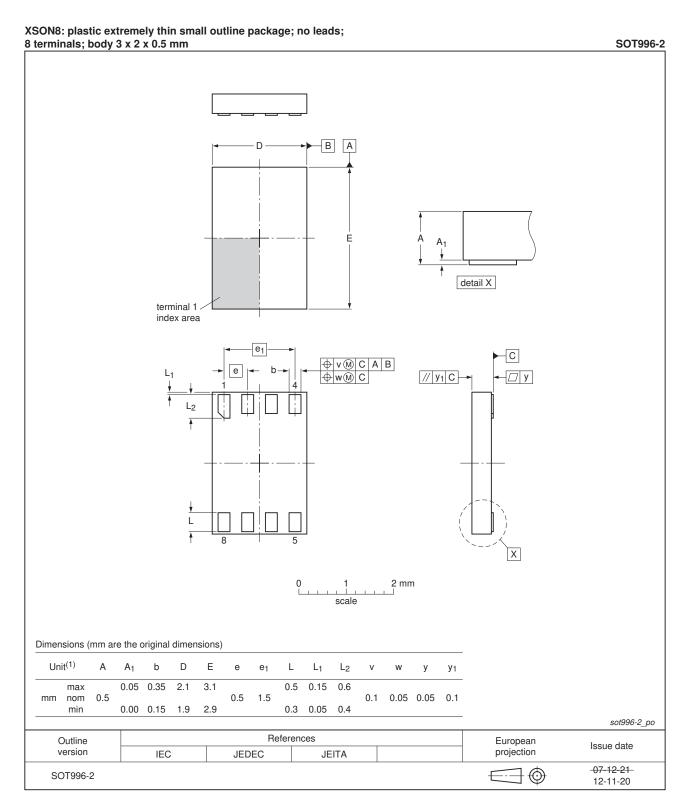


Fig 14. Package outline SOT996-2 (XSON8)

74AVCH2T45

All information provided in this document is subject to legal disclaimers.

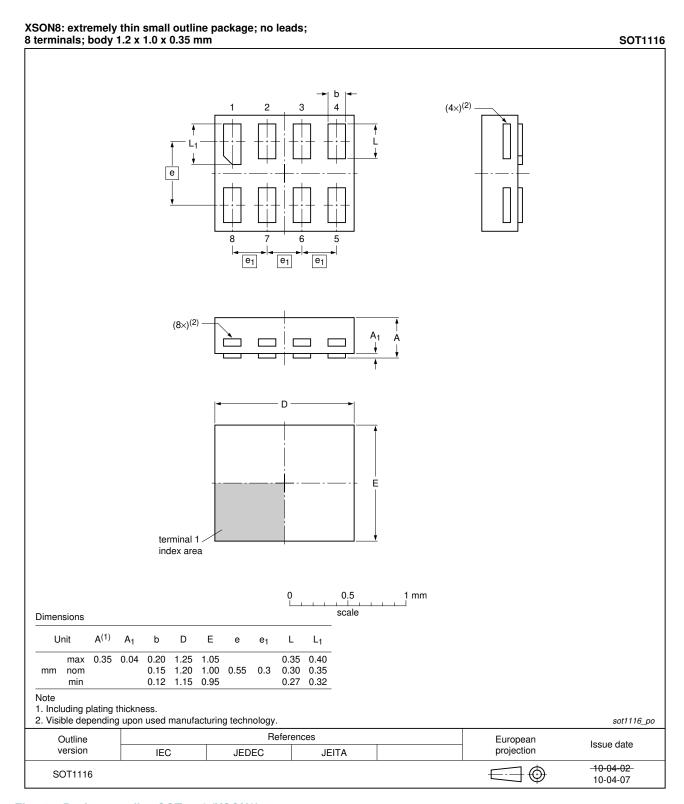


Fig 15. Package outline SOT1116 (XSON8)

74AVCH2T45 All information provided in this document is subject to legal disclaimers.

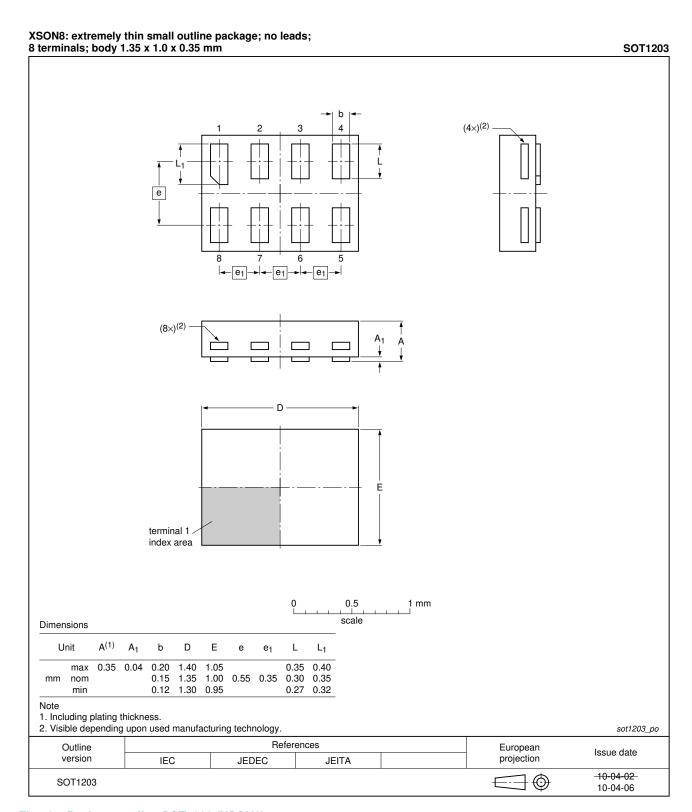


Fig 16. Package outline SOT1203 (XSON8)

74AVCH2T45 All information provided in this document is subject to legal disclaimers.

Dual-bit, dual-supply voltage level translator/transceiver; 3-state

15. Abbreviations

Table 19. Abbreviations

Acronym	Description
CDM	Charged Device Model
DUT	Device Under Test
ESD	ElectroStatic Discharge
НВМ	Human Body Model
MM	Machine Model

16. Revision history

Table 20. Revision history

	-			
Document ID	Release date	Data sheet status	Change notice	Supersedes
74AVCH2T45 v.6	20130402	Product data sheet	-	74AVCH2T45 v.5
Modifications:	 For type nun 	nber 74AVCH2T45GD XSON8	U has changed to XS0	ON8.
74AVCH2T45 v.5	20111214	Product data sheet	-	74AVCH2T45 v.4
Modifications:	 Legal pages 	updated.		
74AVCH2T45 v.4	20101124	Product data sheet	-	74AVCH2T45 v.3
74AVCH2T45 v.3	20090506	Product data sheet	-	74AVCH2T45 v.2
74AVCH2T45 v.2	20090203	Product data sheet	-	74AVCH2T45 v.1
74AVCH2T45 v.1	20070703	Product data sheet	-	-