

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

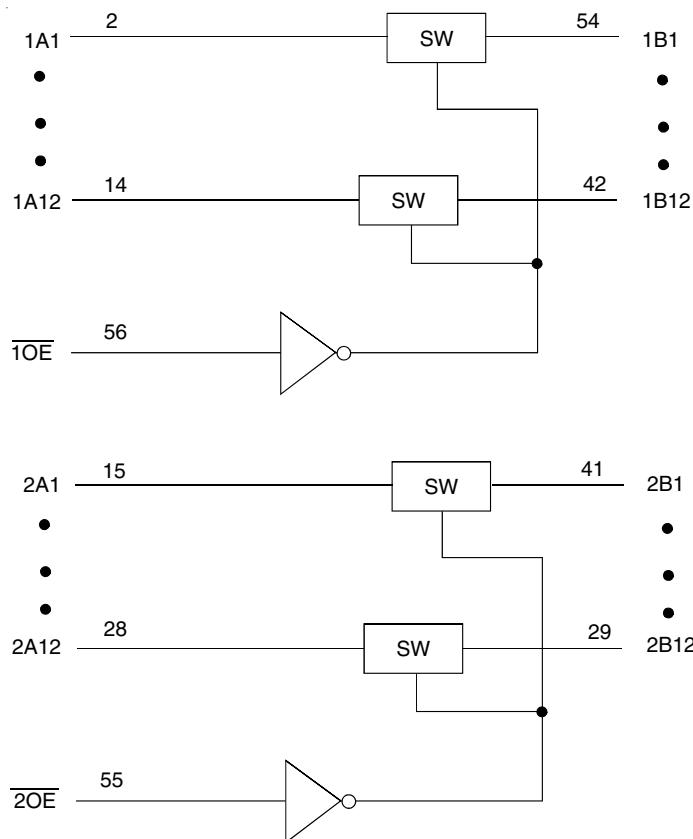
With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

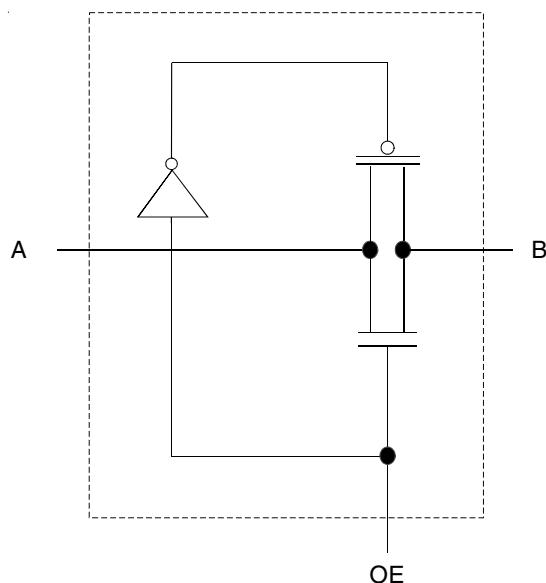
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com


Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100mA
- V_{CC} = 2.3V - 3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in TSSOP package


APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

DESCRIPTION:

The CBTLV16211 operates as a single 24-bit bus switch or as a dual 12-bit bus switch, which provides high speed switching. This device has very low ON resistance, resulting in under 250ps propagation delay throughout the switch. When Output Enable (\overline{OE}) is low, the corresponding 12-bit bus switch is on and port A is connected to Port B. When \overline{OE} is high, the switch is off and a high impedance exists between Port A and Port B.

To ensure the high-impedance state during power up or power down, \overline{OE} should be tied to V_{CC} through a pullup resistor.

**SIMPLIFIED SCHEMATIC, EACH
SWITCH**

PIN CONFIGURATION

NC	1	56	\overline{OE}
1A1	2	55	$\overline{2OE}$
1A2	3	54	1B1
1A3	4	53	1B2
1A4	5	52	1B3
1A5	6	51	1B4
1A6	7	50	1B5
GND	8	49	GND
1A7	9	48	1B6
1A8	10	47	1B7
1A9	11	46	1B8
1A10	12	45	1B9
1A11	13	44	1B10
1A12	14	43	1B11
2A1	15	42	1B12
2A2	16	41	2B1
VCC	17	40	2B2
2A3	18	39	2B3
GND	19	38	GND
2A4	20	37	2B4
2A5	21	36	2B5
2A6	22	35	2B6
2A7	23	34	2B7
2A8	24	33	2B8
2A9	25	32	2B9
2A10	26	31	2B10
2A11	27	30	2B11
2A12	28	29	2B12

TSSOP
TOP VIEW

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max.	Unit
V _{CC}	Supply Voltage Range	-0.5 to 4.6	V
V _I	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
I _{IK}	Input Clamp Current, V _I <0	-50	mA
T _{TG}	Storage Temperature Range	-65 to +150	°C

NOTE:

- Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
\overline{OE}	Output Enable (Active LOW)
xAx	Port A Inputs or Outputs
xBx	Port B Inputs or Outputs

FUNCTION TABLE (EACH 12-BIT BUS SWITCH)⁽¹⁾

Input	Operation
\overline{OE}	
L	A-Port = B-Port
H	Disconnect

NOTE:

- H = HIGH Voltage Level
L = LOW Voltage Level

OPERATING CHARACTERISTICS⁽¹⁾

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
V _{CC}	Supply Voltage		2.3	3.6	V
V _{IH}	High-Level Control Input Voltage	V _{CC} = 2.3V to 2.7V	1.7	—	V
		V _{CC} = 2.7V to 3.6V	2	—	
V _{IL}	Low-Level Control Input Voltage	V _{CC} = 2.3V to 2.7V	—	0.7	V
		V _{CC} = 2.7V to 3.6V	—	0.8	
T _A	Operating Free-Air Temperature		-40	+85	°C

NOTE:

- All unused control inputs of the device must be held at V_{CC} or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: $T_A = -40^\circ\text{C}$ to $+85^\circ\text{C}$

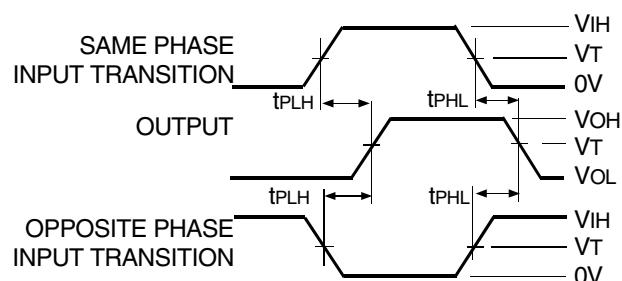
Symbol	Parameter	Test Conditions		Min.	Typ. ⁽¹⁾	Max.	Unit
V_{IK}	Control Inputs, Data I/O	$V_{CC} = 3\text{V}$, $I_I = -18\text{mA}$		—	—	-1.2	V
I_I	Control Inputs	$V_{CC} = 3.6\text{V}$, $V_I = V_{CC}$ or GND		—	—	± 1	μA
I_{OZ}	Data I/O	$V_{CC} = 3.6\text{V}$, $V_O = 0\text{V}$ or 3.6V switch disabled		—	—	5	μA
I_{OFF}		$V_{CC} = 0\text{V}$, V_I or $V_O = 0\text{V}$ or 3.6V		—	—	10	μA
I_{CC}		$V_{CC} = 3.6\text{V}$, $I_O = 0$, $V_I = V_{CC}$ or GND		—	—	10	μA
$\Delta I_{CC}^{(2)}$	Control Inputs	$V_{CC} = 3.6\text{V}$, one input at 3V , other inputs at V_{CC} or GND		—	—	300	μA
C_I	Control Inputs	$V_I = 3\text{V}$ or 0		—	4	—	pF
$C_{IO(OFF)}$		$V_O = 3\text{V}$ or 0, $\overline{OE} = V_{CC}$		—	6.5	—	pF
$R_{ON}^{(3)}$	Max. at $V_{CC} = 2.3\text{V}$ Typ. at $V_{CC} = 2.5\text{V}$	$V_I = 0$	$I_O = 64\text{mA}$	—	5	8	Ω
			$I_O = 24\text{mA}$	—	5	8	
		$V_I = 1.7\text{V}$	$I_O = 15\text{mA}$	—	27	40	
	$V_{CC} = 3\text{V}$	$V_I = 0$	$I_O = 64\text{mA}$	—	5	7	
			$I_O = 24\text{mA}$	—	5	7	
		$V_I = 2.4\text{V}$	$I_O = 15\text{mA}$	—	10	15	

NOTES:

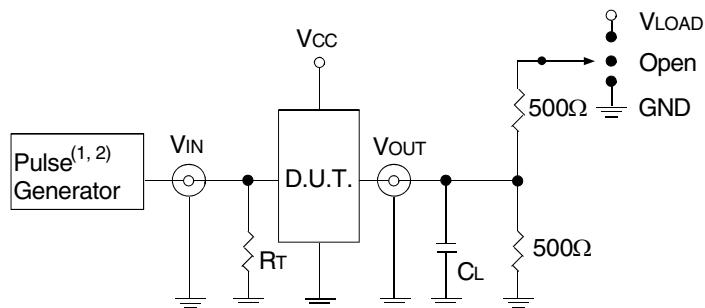
1. Typical values are at 3.3V , $+25^\circ\text{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than V_{CC} or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$V_{CC} = 2.5\text{V} \pm 0.2\text{V}$		$V_{CC} = 3.3\text{V} \pm 0.3\text{V}$		Unit
		Min.	Max.	Min.	Max.	
$t_{PD}^{(1)}$	Propagation Delay A to B or B to A	—	0.15	—	0.25	ns
t_{EN}	Output Enable Time \overline{OE} to A or B	1	7	1	6.2	ns
t_{DIS}	Output Disable time \overline{OE} to A or B	1	7.2	1	7.7	ns


NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).


TEST CIRCUITS AND WAVEFORMS

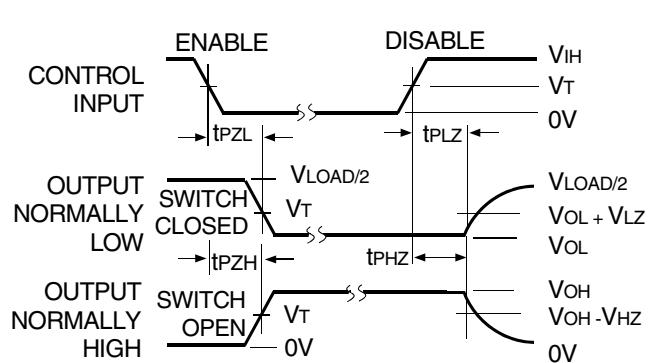
TEST CONDITIONS

Symbol	$V_{CC}^{(1)}=3.3V\pm 0.3V$	$V_{CC}^{(2)}=2.5V\pm 0.2V$	Unit
V_{LOAD}	6	$2 \times V_{CC}$	V
V_{IH}	3	V_{CC}	V
V_T	1.5	$V_{CC} / 2$	V
V_{LZ}	300	150	mV
V_{HZ}	300	150	mV
C_L	50	30	pF

Propagation Delay

Test Circuits for All Outputs

DEFINITIONS:


C_L = Load capacitance: includes jig and probe capacitance.

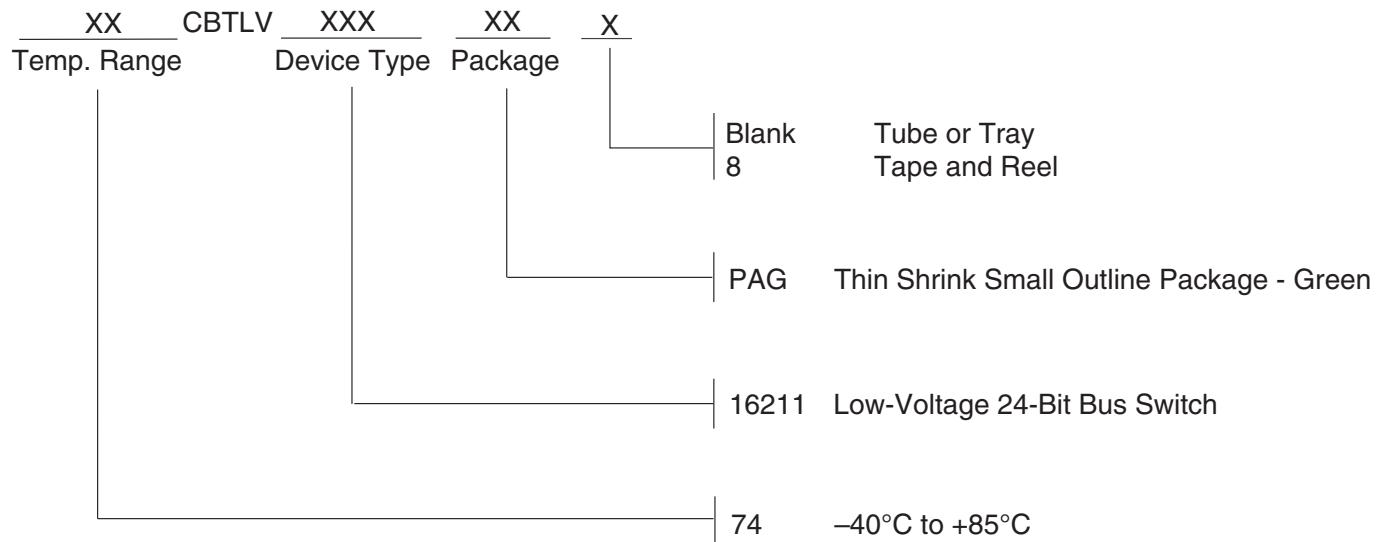
R_T = Termination resistance: should be equal to Z_{OUT} of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2.5ns$; $t_r \leq 2.5ns$.

2. Pulse Generator for All Pulses: Rate $\leq 10MHz$; $t_f \leq 2ns$; $t_r \leq 2ns$.

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

SWITCH POSITION

Test	Switch
t_{PLZ}/t_{PZL}	V_{LOAD}
t_{PHZ}/t_{PZH}	GND
t_{PD}	Open

ORDERING INFORMATION

Datasheet Document History

12/01/2014 Pg. 2, 5 Updated the ordering information by removing the "IDT" notation, obsolete packages "SSOP/TVSOP" and non RoHS part and by adding Tape and Reel information.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138

for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com

for Tech Support:
logichelp@idt.com