: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- $5 \Omega \mathrm{~A} / \mathrm{B}$ bi-directional switch
- Isolation Under Power-Off Conditions
- Over-voltage tolerant
- Latch-up performance exceeds 100 mA
- $\mathrm{Vcc}=2.3 \mathrm{~V}-3.6 \mathrm{~V}$, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in TSSOP package

DESCRIPTION:

The CBTLV16245 is a set of 16 -bit bus switches. It has standard 16245 pinouts. The device is organized as dual 8-bitlow resistance switches with independent Output Enable ($x \overline{\mathrm{OE}}$) control inputs. The switches can be turned on under the control of the LVTTL-compatible Output Enable signals $(x \bar{O} \bar{E})$ for bidirectional data flow between port A and port B. When $x \overline{\mathrm{O}}$ is high, the switch is off and a high impedance exists between Port A and Port B.

To ensure the high-impedance state during power up or power down, $\overline{\mathrm{OE}}$ should be tied to Vcc through a pullup resistor.

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 0.6	V
VI	InputVoltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, $\mathrm{V} / \mathrm{O}<0$	-50	mA
TsTG	Storage TemperatureRange	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
$\bar{x} \bar{O} \bar{E}$	OutputEnable(ActiveLOW)
$x A x$	PortA Inputs or Outputs
$x B x$	PortB Inputs or Outputs

FUNCTION TABLE (EACH8-BITBUs switch) ${ }^{(1)}$

Input	
$\overline{\mathrm{O}} \overline{\mathrm{E}}$	
L	A-Port = B-Port
H	Disconnect

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS(1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	Operating Free-Air Temperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or $G N D$ to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Condition: TA $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit	
VIK	Control Inputs, Data I/O	$\mathrm{Vcc}=3 \mathrm{~V}, \mathrm{ll}=-18 \mathrm{~mA}$		-	-	-1.2	V	
\\|	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$	
Ioz	Data I/O	$\mathrm{Vcc}=3.6 \mathrm{~V}$, $\mathrm{Vo}=0 \mathrm{~V}$ or 3.6 V switch disabled		-	-	5	$\mu \mathrm{A}$	
IofF		$\mathrm{Vcc}=0 \mathrm{~V}$, Vı or $\mathrm{Vo}=0 \mathrm{~V}$ or 3.6 V		-	-	10	$\mu \mathrm{A}$	
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$	
$\Delta \mathrm{lcC}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3V, other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$	
Cl	Control Inputs	$\mathrm{VI}=3 \mathrm{~V}$ or 0		-	4	-	pF	
Clo(off)		$\mathrm{Vo}=3 \mathrm{~V}$ or $0, \overline{\mathrm{OE}}=\mathrm{Vcc}$		-	9	-	pF	
Ron(3)	Max. at $\mathrm{Vcc}=2.3 \mathrm{~V}$	V I $=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω	
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$\mathrm{IO}=24 \mathrm{~mA}$	-	5	8		
		$\mathrm{VI}=1.7 \mathrm{~V}$	$\mathrm{lo}=15 \mathrm{~mA}$	-	27	40		
	$\mathrm{Vcc}=3 \mathrm{~V}$	V I $=0$	$1 \mathrm{O}=64 \mathrm{~mA}$	-	5	7		
			$10=24 \mathrm{~mA}$	-	5	7		
		$\mathrm{VI}=2.4 \mathrm{~V}$	$\mathrm{l}=15 \mathrm{~mA}$	-	10	15		

NOTES:

1. Typical values are at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	PropagationDelay A to B or B to A	-	0.15	-	0.25	ns
ten	OutputEnable Time $\overline{\mathrm{OE}}$ to A or B	1	5	1	4.5	ns
tols	OutputDisable time $\overline{\mathrm{OE}}$ to A or B	1	5.5	1	5	ns

NOTE:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)} \mathbf{= 3 . 3 V} \pm \mathbf{0 . 3 V}$	$\mathrm{Vcc}^{(2)} \mathbf{=} \mathbf{2 . 5 V} \pm \mathbf{0 . 2 V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
VT	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs
DEFINITIONS:
$C L=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns}$; $\mathrm{tr} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZItPL	VLOAD
tPHZIPzH	GND
tPD	Open

Propagation Delay

NOTE:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

ORDERING INFORMATION

Datasheet Document History

Pg. 1,2,5 Updated the ordering information by removing the "IDT" notation, obsolete package "TVSOP" and non RoHS part and by adding Tape and Reel information.

