: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- Make-before-break feature
- Over-voltage tolerant
- Internal 500Ω pull-down resistor to GND
- Latch-up performance exceeds 100 mA
- Vcc = 2.3V-3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Available in TSSOP package

APPLICATIONS:

- 3.3V High Speed Bus Switching and Bus Isolation
- Resource sharing

FUNCTIONAL BLOCK DIAGRAM

SIMPLIFIED SCHEMATIC, EACH SWITCH

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS ${ }^{(1)}$

Symbol	Description	Max.	Unit
VCC	Supply Voltage Range	-0.5 to 4.6	V
$\mathrm{~V} /$	Input Voltage Range	-0.5 to 4.6	V
	Continuous Channel Current	128	mA
IIK	Input Clamp Current, V/O <0	-50	mA
TsTG	Storage Temperature Range	$-65 \mathrm{to}+150$	${ }^{\circ} \mathrm{C}$

NOTE:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

PIN DESCRIPTION

Pin Names	Description
S	SelectInput
xAx	PortA Inputs or Outputs
xBx	PortB Inputs or Outputs

FUNCTION TABLE ${ }^{(1)}$

Input	Operation
S	
L	A Port $=$ B2 Port Rpullown $=$ B1 Port
H	

NOTE:

1. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level

OPERATING CHARACTERISTICS(1)

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage		2.3	3.6	V
VIH	High-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	1.7	-	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	2	-	
VIL	Low-Level Control Input Voltage	$\mathrm{Vcc}=2.3 \mathrm{~V}$ to 2.7V	-	0.7	V
		$\mathrm{Vcc}=2.7 \mathrm{~V}$ to 3.6 V	-	0.8	
TA	OperatingFree-AirTemperature		-40	+85	${ }^{\circ} \mathrm{C}$

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Operating Condition: TA $=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$

Symbol	Parameter	Test Conditions		Min.	Typ. ${ }^{(1)}$	Max.	Unit
VIK	Control Inputs, Data I/O	$\mathrm{VcC}=3 \mathrm{~V}, \mathrm{II}=-18 \mathrm{~mA}$		-	-	-1.2	V
1	Control Inputs	$\mathrm{VcC}=3.6 \mathrm{~V}, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	± 1	$\mu \mathrm{A}$
IOFF		$\mathrm{Vcc}=0 \mathrm{~V}$, VI or Vo $=0 \mathrm{~V}$ or 3.6 V		-	-	10	$\mu \mathrm{A}$
ICC		$\mathrm{Vcc}=3.6 \mathrm{~V}, \mathrm{lo}=0, \mathrm{VI}=\mathrm{Vcc}$ or GND		-	-	10	$\mu \mathrm{A}$
$\Delta \mathrm{lcc}{ }^{(2)}$	Control Inputs	$\mathrm{Vcc}=3.6 \mathrm{~V}$, one input at 3V, other inputs at Vcc or GND		-	-	300	$\mu \mathrm{A}$
Cl	Control Inputs	$\mathrm{VI}=3.3 \mathrm{~V}$ or 0		-	3.5	-	pF
$\mathrm{ClO}(\mathrm{OFF})$	A port or B port	$\mathrm{Vo}=3.3 \mathrm{~V}$ or 0		-	22.5	-	pF
Ron(3)	Max. at $\mathrm{Vcc}=2.3 \mathrm{~V}$	$\mathrm{VI}=0$	$10=64 \mathrm{~mA}$	-	5	8	Ω
	Typ. at $\mathrm{Vcc}=2.5 \mathrm{~V}$		$1 \mathrm{O}=24 \mathrm{~mA}$	-	5	8	
		$\mathrm{VI}=1.7 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	11	40	
	$\mathrm{Vcc}=3 \mathrm{~V}$	$\mathrm{VI}=0$	$10=64 \mathrm{~mA}$	-	3	7	
			$10=24 \mathrm{~mA}$	-	3	7	
		$\mathrm{VI}=2.4 \mathrm{~V}$	$10=15 \mathrm{~mA}$	-	7	15	

NOTES:

1. Typical values are at $3.3 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
2. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
3. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch.

SWITCHING CHARACTERISTICS

Symbol	Parameter	$\mathrm{Vcc}=2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$		$\mathrm{Vcc}=3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$		Unit
		Min.	Max.	Min.	Max.	
tpD ${ }^{(1)}$	PropagationDelay A to B or B to A	-	0.15	-	0.25	ns
tpD ${ }^{(2)}$	PropagationDelay S to A	2.5	7.1	2.5	6.7	ns
ten	OutputEnable Time S to B	1	5.6	1	5	ns
tols	OutputDisable Time S to B	1	5	1	4.5	ns
tmb/3/3,4)	Make-Before-BreakTime	0	2	0	2	ns

NOTES:

1. The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impedance).
2. The condition to measure this propagation delay is by observing the change of voltage on the A port introduced by static fields equal to 3 V or 0 V for $3.3 \mathrm{~V} \pm 0.3 \mathrm{~V}$ or Vcc or 0 for $2.5 \mathrm{~V} \pm 0.2 \mathrm{~V}$ on B_{1} and B_{2} ports to get the required transition.
3. The make-before-break time is the duration between the make and break, during transition from one selected port to another.
4. This parameter is guaranteed by design but not production tested.

TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	$\mathrm{Vcc}^{(1)}=\mathbf{3 . 3} \mathrm{V} \pm 0.3 \mathrm{~V}$	$\mathrm{Vcc}^{(2)}=\mathbf{2 . 5 V} \pm 0.2 \mathrm{~V}$	Unit
VLOAD	6	$2 \times \mathrm{Vcc}$	V
VIH	3	Vcc	V
$\mathrm{V} T$	1.5	$\mathrm{Vcc} / 2$	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Test Circuits for All Outputs
DEFINITIONS:
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

1. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tr} \leq 2.5 \mathrm{~ns}$.
2. Pulse Generator for All Pulses: Rate $\leq 10 \mathrm{MHz}$; $\mathrm{tF} \leq 2 \mathrm{~ns} ; \mathrm{tR} \leq 2 \mathrm{~ns}$.

SWITCH POSITION

Test	Switch
tPLZItPL	VLOAD
tPHZIPzH	GND
tPD	Open

Propagation Delay

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Disable Low waveform applies to outputs that are LOW, except when disabled by the output control S.

Enable and Disable Times

ORDERING INFORMATION

for Tech Support: logichelp@idt.com

