

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

LOW-VOLTAGE 20-BIT BUS SWITCH WITH PRECHARGED OUTPUTS

IDT74CBTLV16800

FEATURES:

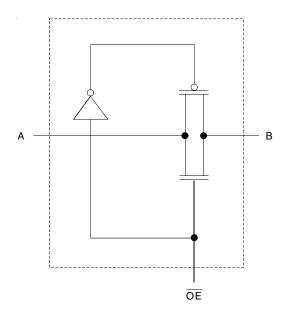
- 5Ω A/B bi-directional switch
- Isolation Under Power-Off Conditions
- · Over-voltage tolerant
- · Latch-up performance exceeds 100mA
- Vcc = 2.3V 3.6V, normal range
- ESD >2000V per MIL-STD-883, Method 3015; >200V using machine model (C = 200pF, R = 0)
- Available in TSSOP and TVSOP packages

APPLICATIONS:

3.3V High Speed Bus Switching and Bus Isolation

DESCRIPTION:

The CBTLV16800 provides 20-bits of high-speed bus switching with low on-state resistance of the switch allowing connections to be made with minimal propagation delay. The device also precharges the B port to a user-selectable bias voltage (BIASV) to minimize live-insertion noise.

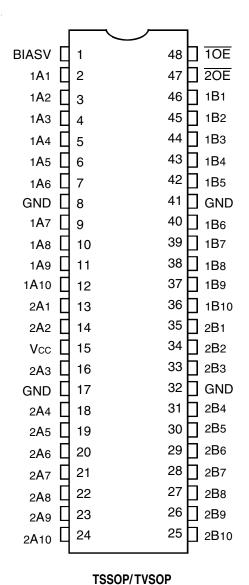

The CBTLV16800 is organized as dual 10-bit bus switches with two different output-enable (\overline{OE}) control inputs. When \overline{OE} is low, the corresponding 10-bit bus switch is on and port A is connected to port B. When OE is high, the switch is open, and a high impedance state exists between the two ports, and port B is precharged to BIASV through the equivalent of a 10-k Ω resistor.

To ensure the high-impedance state during power up or power down, OE should be tied to Vcc through a pullup resistor; the minimum value of the resistor is determined by the current-sinking capability of the driver.

FUNCTIONAL BLOCK DIAGRAM

BIASV 1B1 1B10 2B1 2B10 2A10 20E

SIMPLIFIED SCHEMATIC, EACH **SWITCH**



The IDT logo is a registered trademark of Integrated Device Technology, Inc

INDUSTRIAL TEMPERATURE RANGE

JUNE 2006

PIN CONFIGURATION

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max.	Unit
Vcc	Supply Voltage Range	-0.5 to 4.6	٧
BIASV	Bias Voltage Range, Vı	-0.5 to 4.6	٧
Vı	Input Voltage Range	-0.5 to 4.6	٧
	Continuous Channel Current	128	mA
lık	Input Clamp Current, VI/O < 0	– 50	mA
Tstg	Storage Temperature Range	-65 to +150	°C

NOTE:

Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause
permanent damage to the device. This is a stress rating only and functional operation
of the device at these or any other conditions above those indicated in the operational
sections of this specification is not implied. Exposure to absolute maximum rating
conditions for extended periods may affect reliability.

FUNCTION TABLE (EACH 10-BIT BUS SWITCH)(1)

Input OE	Inputs/Outputs
L	A-Port = B-Port
Н	A-Port = Z
	B-Port = BIASV

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

Z = High-Impedance

OPERATING CHARACTERISTICS(1)

TOP VIEW

Symbol	Parameter	Test Conditions	Min.	Max.	Unit
Vcc	Supply Voltage	•	2.3	3.6	V
BIASV	Bias Voltage		1.3	Vcc	V
ViH	High-Level Control Input Voltage	Vcc = 2.3V to 2.7V	1.7	_	V
		Vcc = 2.7V to 3.6V	2	_	
VIL	Low-Level Control Input Voltage	Vcc = 2.3V to 2.7V	_	0.7	V
		Vcc = 2.7V to 3.6V	_	0.8	
TA	Operating Free-Air Temperature	•	-40	+85	°C

NOTE:

1. All unused control inputs of the device must be held at Vcc or GND to ensure proper device operation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Operating Condition: TA = -40°C to +85°C

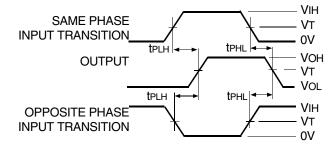
Symbol	Parameter	Test Conditions		Min.	Тур.	Max.	Unit
Vık	Control Inputs, Data I/O	Vcc = 3V, lı = −18mA		-	_	-1.2	V
lı	Control Inputs	Vcc = 3.6V, Vi = Vcc or GNE)	_	_	±1	μA
loz	Data I/O	Vcc = 3.6V, Vo = 0V or 3.6V	switch disabled	_	_	5	μA
loff	A Port	Vcc = 0V, Vı or Vo = 0V or 3	.6V	_	_	10	μA
lo		Vcc = 3V, BIASV = 2.4V, Vc) = 0, OE = Vcc	0.25	_	_	mA
Icc		Vcc = 3.6V, lo = 0, VI = Vcc	or GND	_	_	10	μA
∆lcc ⁽¹⁾	Control Inputs	Vcc = 3.6V, one input at 3V, other inputs at Vcc or GND		_	_	300	μA
Cı	Control Inputs	VI = 3V or 0		_	4	_	pF
CIO(OFF)		Vo = 3V or 0, switch off, BIASV = open, \overline{OE} = Vcc		_	6.5	_	pF
	Vcc = 2.3V	VI = 0	Iı = 64mA	_	5	9	
	Typ. at Vcc = 2.5V		lı = 24mA	_	5	9	
Ron		Vı = 1.7V	II = 15mA	_	25	35	Ω
		VI = 0	Iı = 64mA	_	5	7	
	Vcc = 3V		II = 24mA		5	7	
		VI = 2.4V	Iı = 15mA	_	10	15	

NOTES:

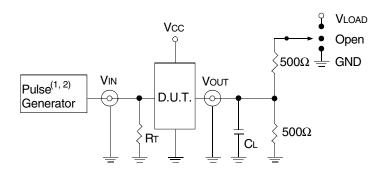
- 1. The increase in supply current is attributable to each input that is at the specified voltage level rather than Vcc or GND.
- 2. This is measured by the voltage drop between the A and B terminals at the indicated current through the switch. On-state resistance is determined by the lower of the voltages of the two (A or B) terminals.

SWITCHING CHARACTERISTICS

		Vcc = 2.	.5V ± 0.2V	Vcc = 3.3	3V ± 0.3V	
Symbol	Parameter	Min.	Max.	Min.	Max.	Unit
t _{PD} (1)	Propagation Delay	_	0.15	_	0.25	ns
	A to B or B to A					
tpzH	BIASV = GND	2.9	7.7	2.2	5.5	ns
	OE to A or B					
tpzl.	BIASV = 3V	2.8	6.4	2.1	5.3	ns
	OE to A or B					
t _{PHZ}	BIASV = GND	1.4	6.8	2.6	7.6	ns
	OE to A or B					
tplz	BIASV = 3V	1.3	4.2	1.5	5.1	ns
	OE to A or B					


NOTE:

^{1.} The propagation delay is the calculated RC time constant of the typical on-state resistance of the switch and the specified load capacitance when driven by an ideal voltage source (zero output impededance).


TEST CIRCUITS AND WAVEFORMS

TEST CONDITIONS

Symbol	Vcc ⁽¹⁾ =3.3V±0.3V	Vcc ⁽²⁾ = 2.5V±0.2V	Unit
VLOAD	6	2 x Vcc	V
ViH	3	Vcc	V
VT	1.5	Vcc / 2	V
VLZ	300	150	mV
VHZ	300	150	mV
CL	50	30	pF

Propagation Delay

Test Circuits for All Outputs

DEFINITIONS:

 $\mathsf{CL} = \mathsf{Load}$ capacitance: includes jig and probe capacitance.

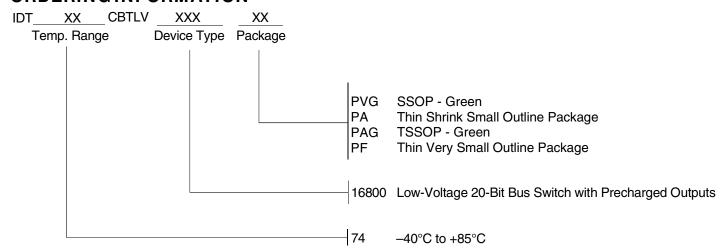
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

NOTES:

- 1. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2.5ns; tR \leq 2.5ns.
- 2. Pulse Generator for All Pulses: Rate \leq 10MHz; tF \leq 2ns; tR \leq 2ns.

ENABLE DISABLE V_{IH} **CONTROL** Vт **INPUT** 0V **t**PZL tPLZ VLOAD/2 OUTPUT VLOAD/2 SWITCH) NORMALLY CLOSED Vol + Vlz Vol tpHZ ◀ OUTPUT Vон **SWITCH** Voh -Vhz **NORMALLY** OPEN/ ΩV HIGH 0V

NOTE:


1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.

Enable and Disable Times

SWITCH POSITION

Test	Switch
tplz/tpzl	Vload
tpHz/tpzH	GND
teo	Open

ORDERING INFORMATION

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com