: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FAIRCHILD

SEMICロNロபСTロRTM

74F153

Dual 4－Input Multiplexer

General Description

The F153 is a high－speed dual 4－input multiplexer with common select inputs and individual enable inputs for each section．It can select two lines of data from four sources． The two buffered outputs present data in the true （non－inverted）form．In addition to multiplexer operation， the F153 can generate any two functions of three variables．

Ordering Code：

Order Number	Package Number	Package Description
74F153SC	M16A	16－Lead Small Outline Integrated Circuit（SOIC），JEDEC MS－012，0．150 Narrow
74F153SJ	M16D	16－Lead Small Outline Package（SOP），EIAJ TYPE II，5．3mm Wide
74F153PC	N16E	16－Lead Plastic Dual－In－Line Package（PDIP），JEDEC MS－001，0．300 Wide

Devices also available in Tape and Reel．Specify by appending the suffix letter＂X＂to the ordering code．

Logic Symbols

IEEE／IEC

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $I_{\mathbf{I H}} / I_{\mathbf{I L}}$ Output $I_{O H} / I_{\mathbf{O L}}$
$\mathrm{I}_{0 \mathrm{a}}-\mathrm{I}_{3 \mathrm{a}}$	Side A Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I}_{0 \mathrm{~b}}-\mathrm{I}_{3 \mathrm{~b}}$	Side B Data Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Common Select Inputs	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{a}}$	Side A Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{E}}_{\mathrm{b}}$	Side B Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
Z_{a}	Side A Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$
Z_{b}	Side B Output	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Truth Table

Select Inputs	Inputs (a or b)						Output
S $_{\mathbf{0}}$	S $_{\mathbf{1}}$	$\overline{\text { E }}$	I $_{\mathbf{0}}$	I $_{\mathbf{1}}$	I $_{\mathbf{2}}$	I $_{\mathbf{3}}$	Z
X	X	H	X	X	X	X	L
L	L	L	L	X	X	X	L
L	L	L	H	X	X	X	H
H	L	L	X	L	X	X	L
H	L	L	X	H	X	X	H
L	H	L	X	X	L	X	L
L	H	L	X	X	H	X	H
H	H	L	X	X	X	L	L
H	H	L	X	X	X	H	H

H= HIGH Voltage Level
X= Immaterial

Functional Description

The F153 is a dual 4 -input multiplexer. It can select two bits of data from up to four sources under the control of the common Select inputs ($\mathrm{S}_{0}, \mathrm{~S}_{1}$). The two 4 -input multiplexer circuits have individual active LOW Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) which can be used to strobe the outputs independently. When the Enables ($\overline{\mathrm{E}}_{\mathrm{a}}, \overline{\mathrm{E}}_{\mathrm{b}}$) are HIGH, the corresponding outputs (Z_{a}, Z_{b}) are forced LOW. The F153 is the logic implementation of a 2-pole, 4-position switch, where the position of the switch is determined by the logic levels supplied to the two Select inputs. The logic equations for the outputs are as follows:

$$
\begin{aligned}
& \mathrm{Z}_{\mathrm{a}}=\overline{\mathrm{E}}_{\mathrm{a}} \cdot\left(\mathrm{l}_{0 \mathrm{a}} \cdot \overline{\mathrm{~s}}_{1} \cdot \overline{\mathrm{~s}}_{0}+\mathrm{I}_{1} \cdot \overline{\mathrm{~s}}_{1} \cdot \mathrm{~S}_{0}+\right. \\
& \left.\mathrm{I}_{2 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \bar{S}_{0}+\mathrm{I}_{3 \mathrm{a}} \cdot \mathrm{~S}_{1} \cdot \mathrm{~S}_{0}\right) \\
& \mathrm{Z}_{\mathrm{b}}=\overline{\mathrm{E}}_{\mathrm{b}} \cdot\left(\mathrm{l}_{0 \mathrm{~b}} \cdot \overline{\mathrm{~S}}_{1} \cdot \overline{\mathrm{~S}}_{0}+\mathrm{I}_{10} \cdot \overline{\mathrm{~S}}_{\mathrm{s}} \cdot \mathrm{~S}_{0}+\right. \\
& \left.I_{2 b} \cdot S_{1} \cdot \bar{S}_{0}+I_{3 b} \cdot S_{1} \cdot S_{0}\right)
\end{aligned}
$$

The F153 can be used to move data from a group of registers to a common output bus. The particular register from which the data came would be determined by the state of the Select inputs. A less obvious application is as a function generator. The F153 can generate two functions of three variables. This is useful for implementing highly irregular random logic.

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)		Recommended Operating Conditions
Storage Temperature	$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	
Ambient Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$	Free Air Ambient Temperature $\quad 0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Junction Temperature under Bias	$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$	Supply Voltage +4.5 V to +5.5 V
V_{CC} Pin Potential to Ground Pin	-0.5 V to +7.0 V	
Input Voltage (Note 2)	-0.5 V to +7.0 V	
Input Current (Note 2)	-30 mA to +5.0 mA	
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)		
Standard Output 3-STATE Output	$\begin{aligned} & -0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & -0.5 \mathrm{~V} \text { to }+5.5 \mathrm{~V} \end{aligned}$	Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Current Applied to Output in LOW State (Max)	e the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$	Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}=}=-18 \mathrm{~mA}$
V_{OH}	$\begin{array}{ll}\text { Output HIGH Voltage } & 10 \% \mathrm{~V}_{\mathrm{CC}} \\ & 5 \% \mathrm{~V}_{\mathrm{CC}}\end{array}$	$\begin{aligned} & 2.5 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\mathrm{CC}}$			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output High Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{\text {IOD }}=150 \mathrm{mV}$ All Other Pins Grounded
IL	Input LOW Current			-0.6	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		12	20	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
${ }_{\text {tPLH }}$	Propagation Delay	4.5	8.1	10.5	4.5	12.0	ns
$\mathrm{t}_{\text {PHL }}$	S_{n} to Z_{n}	3.5	7.0	9.0	3.5	10.5	
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	4.5	7.1	9.0	4.5	10.5	
	\bar{E}_{n} to Z_{n}	3.0	5.7	7.0	2.5	8.0	ns
$\mathrm{t}_{\text {PLH }}$	Propagation Delay	3.0	5.3	7.0	3.0	8.0	
$\mathrm{t}_{\text {PHL }}$	In_{n} to Z_{n}	2.5	5.1	6.5	2.5	7.5	ns

16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M16D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
Package Number N16E

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
