: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Functional Description

The 74F160A and 74F162A count modulo-10 in the BCD (8421) sequence. From state 9 (HLLH) they increment to state 0 (LLLL). The clock inputs of all flip-flops are driven in parallel through a clock buffer. Thus all changes of the Q outputs (except due to Master Reset of the (F160A) occur as a result of, and synchronous with, the LOW-to-HIGH transition of the CP input signal. The circuits have four fundamental modes of operation, in order of precedence: asynchronous reset (F160A), synchronous reset (F162A), parallel load, count-up and hold. Five control inputs-Master Reset ($\overline{\mathrm{MR}}, \mathrm{F} 160 \mathrm{~A}$), Synchronous Reset ($\overline{\mathrm{SR}}, \mathrm{F} 162 \mathrm{~A}$), Parallel Enable ($\overline{\mathrm{PE}}$), Count Enable Parallel (CEP) and Count Enable Trickle (CET)-determine the mode of operation, as shown in the Mode Select Table. A LOW signal on $\overline{\text { MR }}$ overrides all other inputs and asynchronously forces all outputs LOW. A LOW signal on SR overrides counting and parallel loading and allows all outputs to go LOW on the next rising edge of CP. A LOW signal on $\overline{\mathrm{PE}}$ overrides counting and allows information on the Parallel Data (P_{n}) inputs to be loaded into the flip-flops on the next rising edge of CP. With $\overline{\mathrm{PE}}$ and $\overline{\mathrm{MR}}$ (F160A) or $\overline{\mathrm{SR}}$ (F162A) HIGH, CEP and CET permit counting when both are HIGH. Conversely, a LOW signal on either CEP or CET inhibits counting.

Mode Select Table

$* \overline{\mathbf{S R}}$	$\overline{\mathrm{PE}}$	CET	CEP	Action on the Rising Clock Edge (-)
L	X	X	X	Reset (Clear)
H	L	X	X	Load $\left(P_{n} \rightarrow Q_{n}\right)$
H	H	H	H	Count (Increment)
H	H	L	X	No Change (Hold)
H	H	X	L	No Change (Hold)

*For 74'F162A only
H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial

The F160A and F162A use D-type edge-triggered flip-flops and changing the $\overline{\mathrm{SR}}, \overline{\mathrm{PE}}, \mathrm{CEP}$ and CET inputs when the CP is in either state does not cause errors, provided that the recommended setup and hold times, with respect to the rising edge of CP , are observed.
The Terminal Count (TC) output is HIGH when CET is HIGH and counter is in state 9. To implement synchronous multistage counters, the TC outputs can be used with the CEP and CET inputs in two different ways. Please refer to the F568 data sheet. The TC output is subject to decoding spikes due to internal race conditions and is therefore not recommended for use as a clock or asynchronous reset for flip-flops, counters or registers. In the F160A and F162A decade counters, the TC output is fully decoded and can only be HIGH in state 9 . If a decade counter is preset to an illegal state, or assumes an illegal state when power is applied, it will return to the normal sequence within two counts, as shown in the State Diagram.
Logic Equations:

$$
\begin{aligned}
\text { Count Enable } & =\mathrm{CEP} \times \mathrm{CET} \times \overline{\mathrm{PE}} \\
\mathrm{TC} & =\mathrm{Q}_{0} \times \overline{\mathrm{Q}}_{1} \times \overline{\mathrm{Q}}_{2} \times \mathrm{Q}_{3} \times \mathrm{CET}
\end{aligned}
$$

State Diagram

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings（Note 1）
Storage Temperature
Ambient Temperature under Bias
Junction Temperature under Bias
$V_{C C}$ Pin Potential to Ground Pin
Input Voltage（Note 2）
Input Current（Note 2）
Voltage Applied to Output
in HIGH State（with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$ ）
Standard Output
3－STATE Output
Current Applied to Output
in LOW State（Max）twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage（Min）
DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	v_{cc}	Conditions
$\overline{\mathrm{V}_{1 \mathrm{H}}}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			－1．2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & 2.5 \\ & 2.7 \\ & \hline \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \end{aligned}$
$\overline{\mathrm{V}} \mathrm{OL}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage			0.5	V	Min	$\mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}$
$\overline{I_{H}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\overline{\mathrm{l}_{\mathrm{BVI}}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
$\mathrm{I}_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{CP}, \mathrm{CEP}, \mathrm{P}_{\mathrm{n}}, \overline{\mathrm{MR}}(\mathrm{~F} 160 \mathrm{~A})\right) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\mathrm{CET}, \overline{\mathrm{SR}}(\mathrm{~F} 162 \mathrm{~A}), \overline{\mathrm{PE}}) \end{aligned}$
los	Output Short－Circuit Current	－60		－150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
I_{CC}	Power Supply Current		37	55	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$\mathrm{f}_{\text {MAX }}$	Maximum Count Frequency	90	120		75		80		MHz
$\mathrm{t}_{\text {PLH }}$	Propagation Delay, Count	3.5	5.5	7.5	3.5	9.0	3.5	8.5	
tPHL	CP to Q_{n} ($\overline{\text { PE }}$ Input HIGH)	3.5	7.5	10.0	3.5	11.5	3.5	11.0	ns
${ }_{\text {tpLH }}$	Propagation Delay, Load	4.0	6.0	8.5	4.0	10.0	4.0	9.5	
$\mathrm{t}_{\text {PHL }}$	CP to Q_{n} ($\overline{\mathrm{PE}}$ Input LOW)	4.0	6.0	8.5	4.0	10.0	4.0	9.5	ns
$\mathrm{tpLH}^{\text {l }}$	Propagation Delay	5.0	10.0	14.0	5.0	16.5	5.0	15.0	ns
$t_{\text {PHL }}$	CP to TC	5.0	10.0	14.0	5.0	15.5	5.0	15.0	ns
tpLH	Propagation Delay	2.5	4.5	7.5	2.5	9.0	2.5	8.5	ns
$\mathrm{t}_{\text {PHL }}$	CET to TC	2.5	4.5	7.5	2.5	9.0	2.5	8.5	
${ }_{\text {t PHL }}$	Propagation Delay	5.5	9.0	12.0	5.5	14.0	5.5	13.0	ns
	$\overline{\mathrm{MR}} \text { to } \mathrm{Q}_{\mathrm{n}}(74 \mathrm{~F} 160 \mathrm{~A})$								
$\mathrm{t}_{\text {PHL }}$	Propagation Delay	4.5	8.0	10.5	4.5	12.5	4.5	11.5	ns
	$\overline{\mathrm{MR}}$ to TC (74F160A)								

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW P_{n} to CP (74F160A)	$\begin{aligned} & \hline 4.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.5 \\ & 5.5 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW P_{n} to CP (74F162A)	$\begin{aligned} & \hline 5.0 \\ & 5.0 \end{aligned}$				$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	$\begin{aligned} & \text { Hold Time, HIGH or LOW } \\ & P_{\mathrm{n}} \text { to CP } \end{aligned}$	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		$\begin{aligned} & \hline 2.5 \\ & 2.5 \end{aligned}$		$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 11.0 \\ 8.5 \end{gathered}$		$\begin{aligned} & 13.5 \\ & 10.5 \end{aligned}$		$\begin{gathered} 11.5 \\ 9.5 \end{gathered}$		
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW $\overline{\mathrm{PE}}$ or $\overline{\mathrm{SR}}$ to CP	$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{gathered} 2.0 \\ 0 \end{gathered}$		$\begin{gathered} \hline 2.0 \\ 0 \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{s}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{s}}(\mathrm{~L}) \end{aligned}$	Setup Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & \hline 11.0 \\ & 5.0 \\ & \hline \end{aligned}$		$\begin{gathered} 13.0 \\ 6.0 \\ \hline \end{gathered}$		$\begin{gathered} 11.5 \\ 5.0 \\ \hline \end{gathered}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{H}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{H}}(\mathrm{~L}) \end{aligned}$	Hold Time, HIGH or LOW CEP or CET to CP	$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & 0 \\ & 0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Load) HIGH or LOW	$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 5.0 \end{aligned}$		ns
$\begin{aligned} & \mathrm{t}_{\mathrm{w}}(\mathrm{H}) \\ & \mathrm{t}_{\mathrm{w}}(\mathrm{~L}) \end{aligned}$	Clock Pulse Width (Count) HIGH or LOW	$\begin{aligned} & \hline 4.0 \\ & 6.0 \end{aligned}$		$\begin{aligned} & 5.0 \\ & 8.0 \end{aligned}$		$\begin{aligned} & 4.0 \\ & 7.0 \end{aligned}$		
${ }_{t}(\mathrm{~L})$	$\overline{M R}$ Pulse Width, LOW (74F160A)	5.0		5.0		5.0		ns
$\mathrm{t}_{\text {REC }}$	$\begin{aligned} & \text { Recovery Time } \\ & \overline{\text { MR }} \text { to CP (74F160A) } \\ & \hline \end{aligned}$	6.0		6.0		6.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
