: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathrm{I}_{\mathrm{IH}} / \mathrm{I}_{\mathrm{IL}}$ Output $\mathrm{I}_{\mathrm{OH}} / \mathrm{I}_{\mathrm{OL}}$
CP	Clock Pulse Input (Active Rising Edge)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS 0	Serial Data Input for Right Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS 7	Serial Data Input for Left Shift	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	1.0/2.0	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{MR}}$	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}$	3-STATE Output Enable Inputs (Active LOW)	1.0/1.0	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$1 / \mathrm{O}_{0}-\mathrm{l} / \mathrm{O}_{7}$	Parallel Data Inputs or	3.5/1.083	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	3-STATE Parallel Outputs	150/40(33.3)	-3 mA/24 mA (20 mA)
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs	50/33.3	-1 mA/20 mA

Functional Description

The 74F299 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1}, as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{M R}$ overrides the Select and CP inputs and resets the flip-flops. All other state changes are initiated by the rising edge of the clock. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP, are observed.
A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, hold, load and reset operations can still occur. The 3-STATE outputs are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Mode Select Table

Inputs	Response
$\overline{\mathrm{MR}} \mathrm{S}_{1} \mathrm{~S}_{0} \mathbf{C P}$	
L X X X H H H \sim H L H \sim H H L \sim H L L X	Asynchronous Reset; $\mathrm{Q}_{0}-\mathrm{Q}_{7}=\mathrm{LOW}$ Parallel Load; $I / O_{n} \rightarrow Q_{n}$ Shift Right; $D_{0} \rightarrow Q_{0}, Q_{0} \rightarrow Q_{1}$, etc. Shift Left; $D_{7} \rightarrow Q_{7}, Q_{7} \rightarrow Q_{6}$, etc. Hold

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
$\mathrm{X}=$ Immaterial
$\sim=$ LOW-to-HIGH Clock Transition

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias $V_{C C}$ Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
ESD Last Passing Voltage (Min)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output 3-STATE Output
Current Applied to Output in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA 4000 V

DC Electrical Characteristics

Recommended Operating Conditions

Free Air Ambient Temperature	$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
Supply Voltage	+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{l}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{Q}_{7}, \mathrm{I} / \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{Q}_{7}, \mathrm{I} / \mathrm{O}_{\mathrm{n}}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(1 / \mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\overline{\mathrm{V} \text { OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & \hline 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OL}}=20 \mathrm{~mA}\left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ & \mathrm{I}_{\mathrm{LL}}=24 \mathrm{~mA}\left(\mathrm{I} / \mathrm{O}_{\mathrm{n}}\right) \end{aligned}$
$\overline{I_{\mathrm{H}}}$	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \begin{array}{l} \mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}\left(\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7}, \mathrm{~S}_{0}, \mathrm{~S}_{1}\right. \\ \frac{\mathrm{MR}}{}, \\ \left.\mathrm{OE}_{1}, \overline{\mathrm{OE}}_{2}\right) \end{array} \end{aligned}$
$\overline{\mathrm{I}_{\mathrm{BVI}}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}\left(\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7}, \mathrm{~S}_{0}, \mathrm{~S}_{1},\right. \\ & \left.\mathrm{MR}, \mathrm{OE}_{1}, \overline{\mathrm{OE}}_{2}\right) \end{aligned}$
$\overline{I_{\text {BVIT }}}$	Input HIGH Current Breakdown Test (I/O)			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
${ }_{\text {Cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \hline \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{I}_{\mathrm{OD}}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7},{\left.\overline{\mathrm{MR}}, \overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}\right)}_{\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}\right)}\right. \end{aligned}$
$\begin{aligned} & \hline \mathrm{I}_{\mathrm{H}^{+}} \\ & \mathrm{I}_{\mathrm{OZH}} \end{aligned}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{1 / \mathrm{O}}=2.7 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
$\begin{aligned} & \hline I_{\mathrm{L}^{+}} \\ & \mathrm{I}_{\mathrm{OZL}} \end{aligned}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{I} / \mathrm{O}}=0.5 \mathrm{~V}\left(1 / \mathrm{O}_{\mathrm{n}}\right)$
Ios	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
$\mathrm{I} z$	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
${ }^{\text {ICCH }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {CCL }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {c C Z }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ & \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{aligned}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	Min	Max	
$f_{\text {max }}$	Maximum Input Frequency	70	100		85		70		MHz
${ }_{\text {tpLH }}$	Propagation Delay	4.0	7.0	8.0	4.0	9.0	4.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	$C P$ to Q_{0} or Q_{7}	4.5	6.5	8.0	4.5	9.5	4.5	8.5	
${ }_{\text {tpLH }}$	Propagation Delay	3.5	7.0	9.0	3.5	10.0	3.5	10.0	
$\mathrm{t}_{\text {PHL }}$	CP to I / O_{n}	4.0	8.5	9.0	4.0	11.0	4.0	10.0	
${ }_{\text {tPHL }}$	Propagation Delay $\overline{M R}$ to Q_{0} or Q_{7}	5.5	7.5	9.5	5.5	12.5	5.5	10.5	ns
${ }_{\text {tphL }}$	Propagation Delay $\overline{M R}$ to I / O_{n}	5.5	11.0	10.0	5.5	12.0	5.5	10.5	
$\overline{t_{\text {PzH }}}$	Output Enable Time	3.5	6.0	8.0	3.0	9.5	3.5	9.0	ns
$t_{\text {PzL }}$	$\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	4.0	7.0	10.0	4.0	13.0	4.0	11.0	
${ }_{\text {tPHZ }}$	Output Disable Time	2.0	4.5	6.0	1.5	7.0	2.0	7.0	
tpLz	$\overline{\mathrm{OE}}$ to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$			5.5	1.0				
$t_{\text {tpzH }}$	Output Enable Time	3.5		9.0	3.0	10.5	3.5	10.0	ns
$t_{\text {PZL }}$	$\mathrm{S}_{\mathrm{n}} \text { to } \mathrm{I} / \mathrm{O}_{\mathrm{n}}$	4.0		10.0	4.0	13.0	4.0	11.0	
${ }_{\text {tpHZ }}$	Output Disable Time	2.5		6.0	1.5	7.0	2.5	7.0	ns
tpLz	$\mathrm{S}_{\mathrm{n}} \text { to } \mathrm{I} / \mathrm{O}_{\mathrm{n}}$	1.5		5.5	1.0	6.5	1.5	6.5	

AC Operating Requirements

Symbol	Parameter	$\begin{aligned} & \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ & \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{aligned}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C} \text { to }+125^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0 \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	8.5		10.0		8.5		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	S_{0} or S_{1} to CP	8.5		7.5		8.5		
${ }_{t_{H}(\mathrm{H})}$	Hold Time, HIGH or LOW	0		0		0		
$\mathrm{th}_{\mathrm{H}}(\mathrm{L})$	S_{0} or S_{1} to CP	0		0		0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	5.0		5.0		5.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	$\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}$ or DS_{7} to CP	5.0		5.0		5.0		
$t_{H}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0		2.0		
$\mathrm{th}_{\mathrm{H}}(\mathrm{L})$	$1 / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}$ or DS_{7} to CP	2.0		2.0		2.0		
${ }_{\text {t }}(\mathrm{H})$	CP Pulse Width	5.0		5.0		5.0		ns
${ }^{\text {tw }}$ (L)	HIGH or LOW	5.0		5.0		5.0		
${ }^{\text {tw }}$ (L)	$\overline{\text { MR Pulse Width, LOW }}$	5.0		6.0		5.0		ns
$\mathrm{t}_{\text {REC }}$	Recovery Time, $\overline{\mathrm{MR}}$ to CP	7.0		12.0		7.0		ns

Physical Dimensions inches (millimeters) unless otherwise noted

20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
Package Number M20D

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

N20A (REV G)
20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
