imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

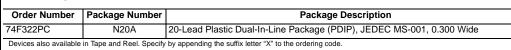
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

74F322 **Octal Serial/Parallel Register with Sign Extend**

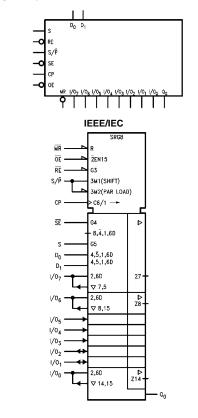
General Description

FAIRCHILD

SEMICONDUCTOR


The 74F322 is an 8-bit shift register with provision for either serial or parallel loading and with 3-STATE parallel outputs plus a bi-state serial output. Parallel data inputs and parallel outputs are multiplexed to minimize pin count. State changes are initiated by the rising edge of the clock. Four synchronous modes of operation are possible: hold (store), shift right with serial entry, shift right with sign extend and parallel load. An asynchronous Master Reset ($\overline{\text{MR}})$ input overrides clocked operation and clears the register.

April 1988


Features

- Multiplexed parallel I/O ports
- Separate serial input and output
- Sign extend function
- 3-STATE outputs for bus applications

Ordering Code:

Logic Symbols

Connection Diagram

_			
RE -	1	20	-v _{cc}
s/P-	2	19	-s
D ₀ —	3	18	- SE
1/0 ₇ —	4	17	-D1
1/05-	5	16	-1/0 ₆
1/03-	6	15	-1/0 ₄
1/0 ₁ -	7	14	-1/0 ₂
OE -	8	13	-1/0 ₀
MR -	9	12	- Q ₀
GND —	10	11	— CP
L			

www.fairchildsemi.com

Unit Loading/Fan Out

D ¹		U.L.	Input I _{IH} /I _{IL}
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}
RE	Register Enable Input (Active LOW)	1.0/1.0	20 µA/-0.6 mA
S/P	Serial (HIGH) or Parallel (LOW) Mode Control Input	1.0/1.0	20 µA/–0.6 mA
SE	Sign Extend Input (Active LOW)	1.0/3.0	20 μA/–1.8 mA
S	Serial Data Select Input	1.0/2.0	20 μA/–1.2 mA
D ₀ , D ₁	Serial Data Inputs	1.0/1.0	20 µA/–0.6 mA
СР	Clock Pulse Input (Active Rising Edge)	1.0/1.0	20 µA/–0.6 mA
MR	Asynchronous Master Reset Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
OE	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 µA/–0.6 mA
Q ₀	Bi-State Serial Output	50/33.3	–1 mA/–20 mA
I/O ₀ –I/O ₇	Multiplexed Parallel Data Inputs or	3.5/1.083	70 μA/–0.65 mA
	3-STATE Parallel Data Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)

Functional Description

The 74F322 contains eight D-type edge triggered flip-flops and the interstage gating required to perform right shift and the intrastage gating necessary for hold and synchronous parallel load operations. A LOW signal on \overline{RE} enables shifting or parallel loading, while a HIGH signal enables the hold mode. A HIGH signal on S/ \overline{P} enables shift right, while a LOW signal disables the 3-STATE output buffers and enables parallel loading. In the shift right mode a HIGH signal on \overline{SE} enables serial entry from either D_0 or D_1 , as determined by the S input. A LOW signal on \overline{SE} enables shift right but Q_7 reloads its contents, thus performing the sign extend function required for the 74F384 Twos Complement Multiplier. A HIGH signal on \overline{OE} disables the 3-STATE output buffers, regardless of the other control inputs. In this condition the shifting and loading operations can still be performed.

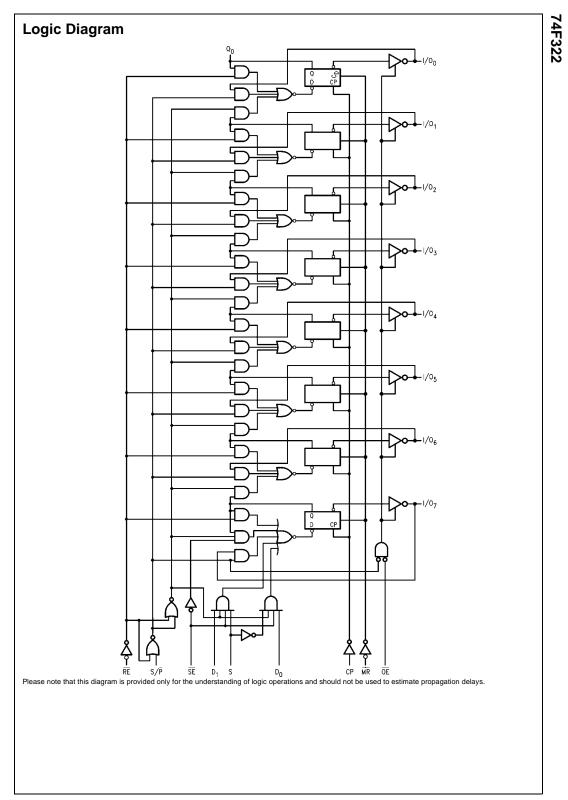
Mode Select Table

				Inpu	ts						Out	puts				
Mode	MR	RE	S/P	SE	S	OE (Note 1)	СР	I/O ₇	I/O ₆	I/O ₅	I/O ₄	I/O ₃	I/O ₂	I/O ₁	I/O ₀	Q ₀
Clear	L	Х	Х	Х	Х	L	Х	L	L	L	L	L	L	L	L	L
	L	х	Х	х	Х	н	Х	Z	Z	Z	Z	Z	Z	Z	Ζ	L
Parallel	Н	L	L	Х	Х	Х	~	۱ ₇	I_6	I_5	I_4	I_3	I_2	I ₁	I ₀	I ₀
Load																
Shift	Н	L	Н	Н	L	L	~	D ₀	0 ₇	O ₆	O ₅	O ₄	O ₃	O ₂	0 ₁	0 ₁
Right	н	L	н	н	Н	L	~	D ₁	0 ₇	O ₆	O_5	O ₄	O ₃	O ₂	0 ₁	0 ₁
Sign	Н	L	Н	L	Х	L	~	07	O ₇	O ₆	O ₅	O ₄	O ₃	O ₂	0 ₁	0 ₁
Extend																
Hold	н	н	Х	Х	Х	L	~	NC	NC							

H = HIGH Voltage Level L = LOW Voltage Level

Z = High Impedance Output State

 $rac{1}{2}$ = LOW-to-HIGH Transition


NC = No Change

Note: $|_{7}-I_{0} = The$ level of the steady-state input at the respective I/O terminal is loaded into the flip-flop while the flip-flop outputs (except Q₀) are isolated from the I/O terminal.

Note: D_0 , D_1 = The level of the steady-state inputs to the serial multiplexer input.

Note: $O_7 - O_0 =$ The level of the respective Q_n flip-flop prior to the last Clock LOW-to-HIGH transition.

Note 1: When the OE input is HIGH all I/On terminals are at the high impedance state; sequential operation or clearing of the register is not affected.

www.fairchildsemi.com

Absolute Maximum Ratings(Note 2)

Storage Temperature	–65°C to +150°C
Ambient Temperature under Bias	$-55^{\circ}C$ to $+125^{\circ}C$
Junction Temperature under Bias	-55°C to +150°C
V _{CC} Pin Potential to Ground Pin	-0.5V to +7.0V
Input Voltage (Note 3)	-0.5V to +7.0V
Input Current (Note 3)	-30 mA to +5.0 mA
Voltage Applied to Output	
in HIGH State (with $V_{CC} = 0V$)	
Standard Output	-0.5V to V _{CC}
3-STATE Output	-0.5V to +5.5V
Current Applied to Output	
in LOW State (Max)	twice the rated I_{OL} (mA)

Recommended Operating Conditions

Free Air Ambient Temperature	
Supply Voltage	

0°C to +70°C +4.5V to +5.5V

Note 2: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 3: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parame	ter	Min	Тур	Max	Units	V _{CC}	Conditions
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal
VIL	Input LOW Voltage				0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Volta	age			-1.2	V	Min	$I_{IN} = -18 \text{ mA}$
V _{OH}	Output HIGH Voltage	10% V _{CC}	2.5					$I_{OH} = -1 \text{ mA} (Q_0, I/O_n)$
		10% V _{CC}	2.4			v	Min	$I_{OH} = -3 \text{ mA} (I/O_n)$
		5% V _{CC}	2.7			v	IVIIN	$I_{OH} = -1 \text{ mA} (Q_0, I/O_n)$
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA} (I/O_n)$
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	$I_{OL} = 20 \text{ mA} (Q_0)$
		10% V _{CC}			0.5			I _{OL} = 24 mA (I/O _n)
IIH	Input HIGH Current				5.0	μA	Max	$V_{IN} = 2.7V$
I _{BVI}	Input HIGH Current Breakdown Test				7.0	μΑ	Max	V _{IN} = 7.0V (Non-I/O Inputs)
I _{BVIT}	Input HIGH Current Bre			0.5	mA	Max	$V_{IN} = 5.5V (I/O_n)$	
ICEX	Output HIGH Leakage Current				50	μΑ	Max	V _{OUT} = V _{CC}
V _{ID}	Input Leakage		4.75			V	0.0	I _{ID} = 1.9 μA
	Test							All Other Pins Grounded
I _{OD}	Output Leakage				3.75	μΑ	0.0	V _{IOD} = 150 mV
	Circuit Current							All Other Pins Grounded
IIL	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V (\overline{RE}, S/\overline{P}, D_n, CP, \overline{MR}, \overline{OE})$
					-1.2	mA	Max	V _{IN} = 0.5V (S)
					-1.8	mA	Max	$V_{\rm IN} = 0.5 V (\overline{\rm SE})$
I _{IH} +	Output Leakage Curren	t			70	μA	Max	$V_{I/O} = 2.7V (I/O_n)$
I _{OZH}								
I _{IL} +	Output Leakage Curren	t			-650	μΑ	Max	$V_{I/O} = 0.5V (I/O_n)$
I _{OZL}								
I _{OS}	Output Short-Circuit Cu	rrent	-60		-150	mA	Max	V _{OUT} = 0V
I _{ZZ}	Bus Drainage Test				500	μA	0.0V	V _{OUT} = 5.25V
I _{CC}	Power Supply Current			60	90	mA	Max	

AC Electrical Characteristics

Symbol	Parameter		$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$,		C to +125°C 50 pF	T _A = 0°C C _L =	Units	
		Min	С _L = 50 pF Тур	Max	Min	Max	Min	Max	
f _{MAX}	Maximum Clock Frequency	70	90		50		70		MHz
t _{PLH}	Propagation Delay	3.5	7.0	7.5	3.5	9.5	3.5	8.5	ns
t _{PHL}	CP to I/On	5.0	8.5	11.0	3.5	10.0	5.0	12.0	
t _{PLH}	Propagation Delay	3.5	7.0	9.0	3.5	11.0	3.5	10.0	
t _{PHL}	CP to Q ₀	3.5	7.0	8.0	3.5	10.0	3.5	9.0	
t _{PHL}	Propagation Delay	6.0	10.0	13.0	6.0	15.0	6.0	14.0	ns
	MR to I/On								
t _{PHL}	Propagation Delay	5.5	7.5	12.0	5.5	14.0	5.5	13.0	ns
	MR to Q ₀								
t _{PZH}	Output Enable Time	3.0	6.5	9.0	3.0	12.5	3.0	10.0	ns
t _{PZL}	OE to I/On	4.0	8.5	11.0	4.0	14.5	4.0	12.0	
t _{PHZ}	Output Disable Time	2.0	4.5	6.0	2.0	8.0	2.0	7.0	
t _{PLZ}	OE to I/On	2.0	5.0	7.0	2.0	10.0	2.0	8.0	
t _{PZH}	Output Enable Time	4.5	8.0	10.5	4.5	13.5	4.5	11.5	ns
t _{PZL}	S/P to I/On	5.5	10.0	14.0	5.5	17.0	5.5	15.0	
t _{PHZ}	Output Disable Time	5.0	9.0	11.5	5.0	16.5	5.0	12.5	
t _{PLZ}	S/P to I/On	6.0	12.0	15.5	6.0	19.5	6.0	16.5	

AC Operating Requirements

		T _A = -	+25°C	$T_A = -55^{\circ}C$	to +125°C	$T_A = 0C$	Units	
Symbol	Parameter	V _{CC} =	+ 5.0V					
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	6.0		14.0		7.0		
t _S (L)	RE to CP	14.0		18.0		16.0		ns
t _H (H)	Hold Time, HIGH or LOW	0		0		0		
t _H (L)	RE to CP	0		0		0		ns
t _S (H)	Setup Time, HIGH or LOW	6.5		8.5		7.5		
t _S (L)	D ₀ , D ₁ or I/O _n to CP	6.5		8.5		7.5		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		3.0		3.0		ns
t _H (L)	D ₀ , D ₁ or I/O _n to CP	2.0		3.0		3.0		115
t _S H)	Setup Time, HIGH or LOW	7.0		9.0		8.0		
t _S (L)	SE to CP	2.5		11.0		3.5		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		2.0		2.0		
t _H (L)	SE to CP	0.0		1.0		0.0		ns
t _S (H)	Setup Time, HIGH or LOW	11.0		13.0		12.0		
t _S (L)	S/P to CP	13.5		21.0		15.5		ns
t _S (H)	Setup Time, HIGH or LOW	6.5		8.5		7.5		
t _S (L)	S to CP	9.0		11.0		10.0		ns
t _H (H)	Hold Time, HIGH or LOW	0		1.0		0		
t _H (L)	S or S/P to CP	0		0		0		ns
t _W (H)	CP Pulse Width, HIGH or LOW	7.0		8.0		7.0		ns
t _W (L)								
t _W (L)	MR Pulse Width, LOW	5.5		7.5		6.5		
t _{REC}	Recovery Time	8.0		12.0		8.0		ns
	MR to CP							

74F322

www.fairchildsemi.com

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.