: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Order Number	Package Number	Package Description
74F323SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F323PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
CP	Clock Pulse Input (Active Rising Edge)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS_{0}	Serial Data Input for Right Shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
DS_{7}	Serial Data Input for Left Shift	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~S}_{0}, \mathrm{~S}_{1}$	Mode Select Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
SR	Synchronous Reset Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OE}}_{1,}, \overline{\mathrm{OE}}_{2}$	3-STATE Output Enable Inputs (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{I} / \mathrm{O}_{0}-1 / \mathrm{O}_{7}$	Multiplexed Parallel Data Inputs	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-0.65 \mathrm{~mA}$
	3-STATE Parallel Data Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{Q}_{0}, \mathrm{Q}_{7}$	Serial Outputs	$50 / 33.3$	$-1 \mathrm{~mA} / 20 \mathrm{~mA}$

Functional Description

The 74F323 contains eight edge-triggered D-type flip-flops and the interstage logic necessary to perform synchronous reset, shift left, shift right, parallel load and hold operations. The type of operation is determined by S_{0} and S_{1} as shown in the Mode Select Table. All flip-flop outputs are brought out through 3-STATE buffers to separate I/O pins that also serve as data inputs in the parallel load mode. Q_{0} and Q_{7} are also brought out on other pins for expansion in serial shifting of longer words.
A LOW signal on $\overline{\mathrm{SR}}$ overrides the Select inputs and allows the flip-flops to be reset by the next rising edge of CP. All other state changes are also initiated by the LOW-to-HIGH CP transition. Inputs can change when the clock is in either state provided only that the recommended setup and hold times, relative to the rising edge of CP , are observed.
A HIGH signal on either $\overline{\mathrm{OE}}_{1}$ or $\overline{\mathrm{OE}}_{2}$ disables the 3-STATE buffers and puts the I/O pins in the high impedance state. In this condition the shift, load, hold and reset operations can still occur. The 3-STATE buffers are also disabled by HIGH signals on both S_{0} and S_{1} in preparation for a parallel load operation.

Mode Select Table

H = HIGH Voltage Level
L = LOW Voltage Level
X = Immaterial
$\mathcal{\sim}=$ LOW-to-HIGH transition

Logic Diagram

lease note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output 3-STATE Output
Current Applied to Output
in LOW State (Max)
in LOW State (Max) twice the rated $\mathrm{I}_{\mathrm{OL}}(\mathrm{mA})$
ESD Last Passing Voltage (Min)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA

$$
-0.5 \mathrm{~V} \text { to } \mathrm{V}_{\mathrm{CC}}
$$ -0.5 V to +5.5 V

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
$\overline{\mathrm{V}} \mathrm{IH}$	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V_{CD}	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{array}{ll} \hline \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} & \left(1 / \mathrm{O}_{\mathrm{n}}\right) \\ \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA} & \left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA} & \left(1 / \mathrm{O}_{\mathrm{n}}\right) \end{array}$
V_{OL}	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{aligned} & 0.5 \\ & 0.5 \end{aligned}$	V	Min	$\begin{array}{ll} \hline \mathrm{IOL}_{\mathrm{OL}}=20 \mathrm{~mA} \quad\left(\mathrm{Q}_{0}, \mathrm{Q}_{7}\right) \\ \mathrm{I}_{\mathrm{OL}}=24 \mathrm{~mA} & \left(1 / \mathrm{O}_{\mathrm{n}}\right) \end{array}$
I_{IH}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{l}_{\mathrm{BVI}}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$ (Non I/O Inputs)
$\bar{l}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$\mathrm{V}_{\text {IN }}=5.5 \mathrm{~V}$ (I/O Inputs)
$\overline{I C E X}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$\mathrm{V}_{\mathrm{IOD}}=150 \mathrm{mV}$ All Other Pins Grounded
IIL	Input LOW Current			$\begin{aligned} & \hline-0.6 \\ & -1.2 \end{aligned}$	$\begin{aligned} & \mathrm{mA} \\ & \mathrm{~mA} \end{aligned}$	Max Max	$\begin{array}{ll} \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V} & \left({\left.\mathrm{CP}, \mathrm{DS}_{0}, \mathrm{DS}_{7}, \overline{\mathrm{SR}}, \overline{\mathrm{OE}}_{1}, \overline{\mathrm{OE}}_{2}\right)}_{\mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}}\left(\mathrm{~S}_{0}, \mathrm{~S}_{1}\right)\right. \end{array}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
lzz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
${ }^{\text {cher }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }^{\text {ICCL }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {ccz }}$	Power Supply Current		68	95	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
${ }_{\text {f MAX }}$	Maximum Input Frequency	70	100		70		MHz
$t_{\text {PLH }}$	Propagation Delay	4.0	7.0	8.0	4.0	8.5	ns
$\mathrm{t}_{\text {PHL }}$	CP to Q_{0} or Q_{7}	4.5	6.5	8.0	4.5	8.5	
$t_{\text {PLH }}$	Propagation Delay	3.5	7.0	9.0	3.5	10.0	
$\mathrm{t}_{\text {PHL }}$	CP to $\mathrm{I} / \mathrm{O}_{\mathrm{n}}$	4.0	8.5	9.0	4.0	10.0	
${ }_{\text {tPZH }}$	Output Enable Time	3.5	6.0	8.0	3.5	9.0	ns
$\mathrm{t}_{\text {PZL }}$			7.0	10.0			
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	2.0	4.5	6.0	2.0	7.0	
tPLZ		1.0	4.0	5.5	1.0	6.5	
${ }_{\text {tPZH }}$	Output Enable Time	3.5		9.0	3.5	10.0	ns
$t_{\text {PZL }}$	$S_{n} \text { to } I / O_{n}$	4.0		10.0	4.0	11.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time	2.5		6.0	2.5	7.0	ns
$t_{\text {PLZ }}$	S_{n} to $1 / O_{n}$	1.0		5.5		6.5	

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		Units
		Min	Max	Min	Max	
$\overline{t_{s}(\mathrm{H})}$	Setup Time, HIGH or LOW	8.5		8.5		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	S_{0} or S_{1} to CP	8.5		8.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	S_{0} or S_{1} to CP	0		0		
$\mathrm{t}_{5}(\mathrm{H})$	Setup Time, HIGH or LOW	5.0		5.0		ns
$\mathrm{t}_{\text {S }}(\mathrm{L})$	$\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	5.0		5.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	2.0		2.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\mathrm{I} / \mathrm{O}_{\mathrm{n}}, \mathrm{DS}_{0}, \mathrm{DS}_{7}$ to CP	2.0		2.0		
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	10.0		10.0		ns
$\mathrm{ts}_{\text {(}}(\mathrm{L})$	$\overline{\mathrm{SR}}$ to CP	10.0		10.0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	0		0		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	$\overline{\mathrm{SR}}$ to CP	0		0		
$\mathrm{t}_{\mathrm{W}}(\mathrm{H})$	CP Pulse Width	5.0		5.0		ns
${ }_{\text {t }}$ (L)	HIGH or LOW	5.0		5.0		

Physical Dimensions inches（millimeters）unless otherwise noted

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
