: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Ordering Code:

Order Number	Package Number	Package Description
74F350SC	M16A	16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
74F350SJ	M16D	16-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F350PC	N16E	16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter " X " to the ordering code.

Logic Symbols

Connection Diagram

Truth Table

Inputs			Outputs			
$\overline{\mathrm{OE}}$	$\mathrm{S}_{\mathbf{1}}$	$\mathbf{S}_{\mathbf{0}}$	$\mathrm{O}_{\mathbf{0}}$	$\mathrm{O}_{\mathbf{1}}$	$\mathrm{O}_{\mathbf{2}}$	$\mathbf{O}_{\mathbf{3}}$
H	X	X	Z	Z	Z	Z
L	L	L	I_{0}	I_{1}	I_{2}	I_{3}
L	L	H	I_{-1}	I_{0}	I_{1}	I_{2}
L	H	L	I_{-2}	I_{-1}	I_{0}	I_{1}
L	H	H	I_{-3}	I_{-2}	I_{-1}	I_{0}

$\mathrm{H}=$ HIGH Voltage Level
L = LOW Voltage Level
$X=$ Immaterial
$Z=$ High Impedance

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I O L}_{\mathbf{O L}}$
$\mathrm{S}_{0}, \mathrm{~S}_{1}$	Select Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{I}_{-3}-\mathrm{I}_{3}$	Data Inputs	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
OE	Output Enable Input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\mathrm{O}_{0}-\mathrm{O}_{3}$	3-STATE Outputs	$150 / 40(33.3)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$

Functional Description

The 74F350 is operationally equivalent to a 4 -input multiplexer with the inputs connected so that the select code causes successive one-bit shifts of the data word. This internal connection makes it possible to perform shifts of 0 , 1,2 or 3 places on words of any length.
A 4-bit data word is introduced at the I_{n} inputs and is shifted according to the code applied to the select inputs $\mathrm{S}_{0}, \mathrm{~S}_{1}$. Outputs $\mathrm{O}_{0}-\mathrm{O}_{3}$ are 3-STATE, controlled by an active LOW output enable ($\overline{\mathrm{OE}})$. When $\overline{\mathrm{OE}}$ is LOW, data outputs will follow selected data inputs; when HIGH, the data outputs will be forced to the high impedance state. This feature allows shifters to be cascaded on the same output lines or to a common bus. The shift function can be
logical, with zeros pulled in at either or both ends of the shifting field; arithmetic, where the sign bit is repeated during a shift down; or end around, where the data word forms a continuous loop.

Logic Equations

$$
\begin{aligned}
& \mathrm{O}_{0}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} 1_{0}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{-1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{-2}+\mathrm{S}_{0} \mathrm{~S}_{1} 1_{-3} \\
& \mathrm{O}_{1}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} 1_{1}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{0}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{-1}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{-2} \\
& \mathrm{O}_{2}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{2}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{1}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{0}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{1} \\
& \mathrm{O}_{3}=\overline{\mathrm{S}}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{3}+\mathrm{S}_{0} \overline{\mathrm{~S}}_{1} \mathrm{I}_{2}+\overline{\mathrm{S}}_{0} \mathrm{~S}_{1} \mathrm{I}_{1}+\mathrm{S}_{0} \mathrm{~S}_{1} \mathrm{I}_{0}
\end{aligned}
$$

Logic Diagram

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output 3-STATE Output
Current Applied to Output
in LOW State (Max)
twice the rated $\mathrm{l}_{\mathrm{OL}}(\mathrm{mA})$
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$
$-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA
-0.5 V to V_{CC} -0.5 V to +5.5 V

Recommended Operating

 ConditionsFree Air Ambient Temperature
Supply Voltage

$0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$
+4.5 V to +5.5 V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	V_{cc}	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V_{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \end{aligned}$			V	Min	$\begin{aligned} & l_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-1 \mathrm{~mA} \\ & \mathrm{l}_{\mathrm{OH}}=-3 \mathrm{~mA} \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW Voltage $\quad 10 \% \mathrm{~V}_{\text {CC }}$			0.5	V	Min	$\mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}$
IH	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\mathrm{IN}}=7.0 \mathrm{~V}$
${ }_{\text {CEX }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\begin{aligned} & \mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A} \\ & \text { All Other Pins Grounded } \end{aligned}$
$\overline{\mathrm{IOD}}$	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
$\mathrm{I}_{\text {LL }}$	Input LOW Current			-1.2	mA	Max	$\mathrm{V}_{\text {IN }}=0.5 \mathrm{~V}$
$\mathrm{I}_{\text {OzH }}$	Output Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}$
lozl	Output Leakage Current			-50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}$
los	Output Short-Circuit Current	-60		-150	mA	Max	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}$
$\mathrm{I}_{\mathrm{CCH}}$	Power Supply Current		34	42	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
$\mathrm{I}_{\text {CLL }}$	Power Supply Current		40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
$\mathrm{I}_{\text {ccz }}$	Power Supply Current		40	57	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
$\overline{t_{\text {PLH }}}$ $t_{\text {PHL }}$	$\begin{aligned} & \text { Propagation Delay } \\ & I_{n} \text { to } O_{n} \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 4.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 6.0 \\ & 5.5 \end{aligned}$	$\begin{aligned} & \hline 3.0 \\ & 2.5 \end{aligned}$	$\begin{aligned} & 7.0 \\ & 6.5 \end{aligned}$	ns
$\mathrm{t}_{\mathrm{PLH}}$ $\mathrm{t}_{\mathrm{PHL}}$	Propagation Delay $S_{n} \text { to } O_{n}$	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{aligned} & \hline 7.8 \\ & 6.5 \end{aligned}$	$\begin{gathered} \hline 10.0 \\ 8.5 \end{gathered}$	$\begin{aligned} & \hline 4.0 \\ & 3.0 \end{aligned}$	$\begin{gathered} 13.5 \\ 9.5 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\mathrm{PZH}} \\ & \mathrm{t}_{\mathrm{PZLL}} \\ & \hline \end{aligned}$	Output Enable Time	$\begin{aligned} & \hline 2.5 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 5.0 \\ & 7.0 \end{aligned}$	$\begin{aligned} & \hline 7.0 \\ & 9.0 \end{aligned}$	$\begin{aligned} & 2.5 \\ & 4.0 \end{aligned}$	$\begin{gathered} \hline 8.0 \\ 10.0 \end{gathered}$	ns
$\begin{aligned} & \hline \mathrm{t}_{\text {PHZ }} \\ & \mathrm{t}_{\text {PLZ }} \end{aligned}$	Output Disable Time	$\begin{aligned} & \hline 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 3.9 \\ & 4.0 \end{aligned}$	$\begin{aligned} & \hline 5.5 \\ & 5.5 \end{aligned}$	$\begin{aligned} & 2.0 \\ & 2.0 \end{aligned}$	$\begin{aligned} & 6.5 \\ & 7.5 \end{aligned}$	ns

Physical Dimensions inches (millimeters) unless otherwise noted

16-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-012, 0.150 Narrow
Package Number M16A

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

16-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N16E Fairchild reserves the right at any time without notice to change said circuitry and specifications.
LIFE SUPPORT POLICY
FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
