

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China









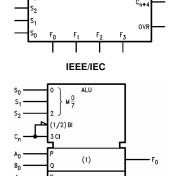
May 1988 Revised January 2004

## 74F382

# **4-Bit Arithmetic Logic Unit**

#### **General Description**

The 74F382 performs three arithmetic and three logic operations on two 4-bit words, A and B. Two additional Select input codes force the Function outputs LOW or HIGH. An Overflow output is provided for convenience in twos complement arithmetic. A Carry output is provided for ripple expansion. For high-speed expansion using a Carry Lookahead Generator, refer to the 74F381 data sheet.


#### **Features**

- Performs six arithmetic and logic functions
- Selectable LOW (clear) and HIGH (preset) functions
- LOW input loading minimizes drive requirements
- Carry output for ripple expansion
- Overflow output for twos complement arithmetic

### **Ordering Code:**

| Order Number | Package Number | Package Description                                                        |
|--------------|----------------|----------------------------------------------------------------------------|
| 74F382SC     | M20B           | 20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide |
| 74F382SJ     | M20D           | 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide              |
| 74F382PC     | N20A           | 20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide     |

## **Logic Symbols**



(2)

BO/CO (1/2) BO (1/2) BO 3 CO

#### **Connection Diagram**



### **Unit Loading/Fan Out**

| Pin Names                      | Description            | U.L.     | Input I <sub>IH</sub> /I <sub>IL</sub>  |
|--------------------------------|------------------------|----------|-----------------------------------------|
| Fill Names                     | Description            | HIGH/LOW | Output I <sub>OH</sub> /I <sub>OL</sub> |
| A <sub>0</sub> -A <sub>3</sub> | A Operand Inputs       | 1.0/4.0  | 20 μA/–2.4 mA                           |
| B <sub>0</sub> -B <sub>3</sub> | B Operand Inputs       | 1.0/4.0  | 20 μA/-2.4 mA                           |
| S <sub>0</sub> -S <sub>2</sub> | Function Select Inputs | 1.0/1.0  | 20 μA/-0.6 mA                           |
| C <sub>n</sub>                 | Carry Input            | 1.0/5.0  | 20 μA/-3.0 mA                           |
| C <sub>n + 4</sub>             | Carry Output           | 50/33.3  | −1 mA/20 mA                             |
| OVR                            | Overflow Output        | 50/33.3  | −1 mA/20 mA                             |
| F <sub>0</sub> -F <sub>3</sub> | Function Outputs       | 50/33.3  | −1 mA/20 mA                             |

#### **Functional Description**

Signals applied to the Select inputs  $\mathrm{S}_0\text{--}\mathrm{S}_2$  determine the mode of operation, as indicated in the Function Select Table. An extensive listing of input and output levels is shown in the Truth Table. The circuit performs the arithmetic functions for either active HIGH or active LOW operands, with output levels in the same convention. In the Subtract operating modes, it is necessary to force a carry (HIGH for active HIGH operands, LOW for active LOW operands) into the  $\mathrm{C}_n$  input of the least significant package. Ripple expansion is illustrated in Figure 2. The overflow output OVR is the Exclusive-OR of  $\mathrm{C}_{n+3}$  and  $\mathrm{C}_{n+4}$ ; a HIGH signal on OVR indicates overflow in twos complement operation. Typical delays for Figure 2 are given in Figure 1.

#### **Function Select Table**

|                | 0-14           |                | I         |  |  |
|----------------|----------------|----------------|-----------|--|--|
|                | Select         | Operation      |           |  |  |
| S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | Operation |  |  |
| L              | Ĺ              | L              | Clear     |  |  |
| Н              | L              | L              | B Minus A |  |  |
| L              | Н              | L              | A Minus B |  |  |
| Н              | Н              | L              | A Plus B  |  |  |
| L              | L              | Н              | A ⊕ B     |  |  |
| Н              | L              | Н              | A + B     |  |  |
| L              | Н              | Н              | AB        |  |  |
| Н              | Н              | Н              | Preset    |  |  |

H = HIGH Voltage Level L = LOW Voltage Level

| Bath Command                                         | Toward  | Output                   |
|------------------------------------------------------|---------|--------------------------|
| Path Segment                                         | F       | C <sub>n + 4</sub> , OVR |
| A <sub>1</sub> or B <sub>1</sub> to C <sub>n+4</sub> | 6.5 ns  | 6.5 ns                   |
| C <sub>n</sub> to C <sub>n+4</sub>                   | 6.3 ns  | 6.3 ns                   |
| C <sub>n</sub> to C <sub>n+4</sub>                   | 6.3 ns  | 6.3 ns                   |
| C <sub>n</sub> to F                                  | 8.1 ns  | _                        |
| $C_n$ to $C_{n+4}$ , OVR                             | _       | 8.0 ns                   |
| Total Delay                                          | 27.2 ns | 27.1 ns                  |

FIGURE 1. 16-Bit Delay Tabulation

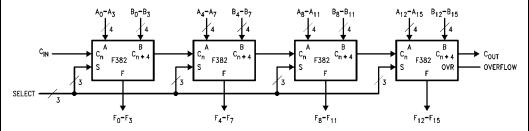
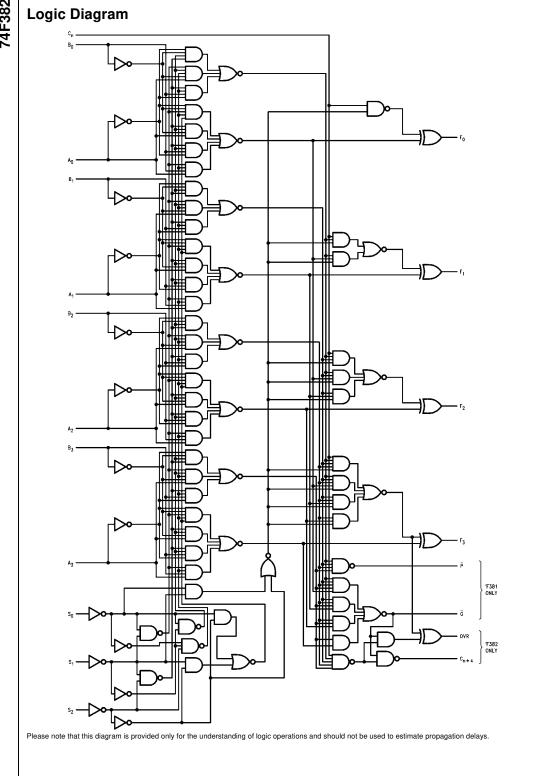




FIGURE 2. 16-Bit Ripply Carry ALU Expansion

## **Truth Table**

|                   | Inputs Outputs |                |                |                |                |                |                |                |                |                |        |                    |
|-------------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|----------------|--------|--------------------|
| Function          | S <sub>0</sub> | S <sub>1</sub> | S <sub>2</sub> | C <sub>n</sub> | A <sub>n</sub> | B <sub>n</sub> | F <sub>0</sub> | F <sub>1</sub> | F <sub>2</sub> | F <sub>3</sub> | OVR    | C <sub>n + 4</sub> |
| CLEAR             | L              | L              | L              | L              | Χ              | Χ              | L              | L              | L              | L              | Н      | Н                  |
|                   |                |                |                | Н              | Х              | Χ              | L              | L              | L              | L              | Н      | Н                  |
| B MINUS A         | Н              | L              | L              | L              | L              | L              | Н              | Н              | Н              | Н              | L      | L                  |
|                   |                |                |                | L              | L              | Н              | L              | Н              | Н              | Н              | L      | Н                  |
|                   |                |                |                | L              | Н              | L              | L              | L              | L              | L              | L      | L                  |
|                   |                |                |                | L              | Н              | Н              | Н              | Н              | Н              | Н              | L      | L                  |
|                   |                |                |                | Н              | L              | L              | L              | L              | L              | L              | L      | Н                  |
|                   |                |                |                | Н              | L              | Н              | Н              | Н              | Н              | Н              | L      | Н                  |
|                   |                |                |                | H              | H              | L              | H              | L              | L              | L              | L      | L                  |
|                   | l .            |                |                | H              | Н .            | H .            | L              | L              | L              | L              | L      | Н                  |
| A MINUS B         | L              | Н              | L              | L              | L              | L<br>          | H              | H              | H              | H              | L      | L                  |
|                   |                |                |                | L              | L              | H              | L              | L              | L              | L              | L      | L                  |
|                   |                |                |                | L              | Н              | L              | L              | H              | H              | H              | L      | H                  |
|                   |                |                |                | L              | H              | H              | H              | H              | H              | H              | L      | L                  |
|                   |                |                |                | H              | L              | L              | L              | L              | L              | L              | L      | H                  |
|                   |                |                |                | H              | L              | H              | H              | L              | L              | L              | L      | L<br>              |
|                   |                |                |                | Н              | H              | L<br>          | H .            | H              | H              | H              | L      | Н                  |
|                   |                |                |                | Н              | Н              | H              | L              | L              | L              | L              | L      | Н                  |
| A PLUS B          | Н              | Н              | L              | L              | L              | L              | L              | L              | L              | L              | L      | L                  |
|                   |                |                |                | L              | L              | Н              | Н              | Н              | Н              | Н              | L      | L                  |
|                   |                |                |                | L              | Н              | L              | H              | H              | H              | H              | L      | L                  |
|                   |                |                |                | L              | H              | H              | L              | H              | H              | Η .            | L      | H                  |
|                   |                |                |                | Н              | L              | L              | H              | L              | L              | L              | L      | L                  |
|                   |                |                |                | H              | L              | H              | L              | L              | L              | L              | L      | Н                  |
|                   |                |                |                | Н              | H              | L              | L              | L              | L              | L              | L      | Н                  |
|                   |                |                |                | Н              | H              | H              | H              | H              | H              | H              | L      | Н                  |
| A ⊕ B             | L              | L              | Н              | X              | L              | L              | L              | L              | L              | L              | L      | L                  |
|                   |                |                |                | X              | L              | H              | H              | Н              | H              | H              | L      | L                  |
|                   |                |                |                | L              | H              | L<br>          | H .            | H              | Н .            | H              | L      | L                  |
|                   |                |                |                | X              | H              | H              | L              | L              | L              | L              | H      | Н                  |
| A D               | L              |                |                | Н              | Н .            | L              | H              | Н.             | Н .            | Н.             | H      | Н.                 |
| A + B             | Н              | L              | Н              | X              | L              | L              | L              | L              | L              | L              | L      | L                  |
|                   |                |                |                | X              | L              | H              | H              | Н              | Н              | H              | L      | L                  |
|                   |                |                |                | X              | Н              | L              | H              | H              | Н              | Н              | L      | L                  |
|                   |                |                |                | L              | Н              | Н              | H              | H              | Н              | Н              | L      | L                  |
| AB                | L              | Н              | Н              | H<br>X         | H<br>L         | H<br>L         | H<br>L         | H<br>L         | H<br>L         | H<br>L         | H      | H                  |
| AD                | L              | п              | п              | X              |                | Н              | L              |                |                |                |        |                    |
|                   |                |                |                |                | L              |                |                | L              | L              | L              | L      | L                  |
|                   |                |                |                | X<br>L         | H<br>H         | L<br>H         | L<br>H         | L<br>H         | L<br>H         | L<br>H         | H<br>L | H<br>L             |
|                   |                |                |                | H              | Н              | Н              | Н              | Н              | Н              | Н              | Н      | Н                  |
| DDECET            | Н              | Н              | Н              | Х              |                |                |                | H              | H              |                |        |                    |
| PRESET            | Н              | П              | П              | X              | L<br>L         | L<br>H         | H<br>H         | H<br>H         | H<br>H         | H<br>H         | L      | L<br>L             |
|                   |                |                |                | X              | Н              |                |                | Н              |                |                |        |                    |
|                   |                |                |                | L              | Н              | L              | Н              |                | Н              | Н              | L      | L                  |
|                   |                |                |                |                |                | Н              | Н              | Н              | Н              | Н              | L      | L                  |
| = HIGH Voltage Le |                | L = LOW        |                | Н              | H<br>X = Imm   | Н              | Н              | Н              | Н              | Н              | Н      | Н                  |

3



## **Absolute Maximum Ratings**(Note 1)

## **Recommended Operating Conditions**

Storage Temperature -65°C to +150°C Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias -55°C to +150°C V<sub>CC</sub> Pin Potential to Ground Pin -0.5V to +7.0V

Input Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with  $V_{CC} = 0V$ )

Standard Output -0.5V to  $V_{CC}$ 

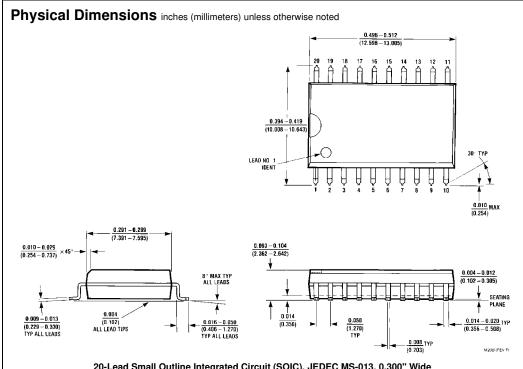
3-STATE Output -0.5V to +5.5V

Current Applied to Output

twice the rated  $I_{OL}$  (mA) in LOW State (Max)

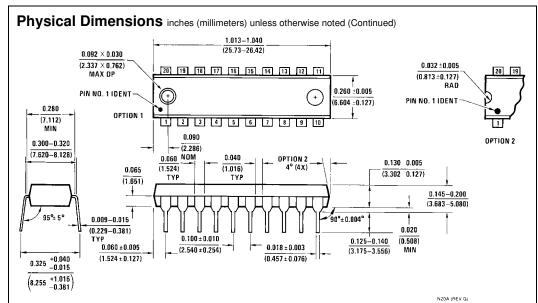
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.


Note 2: Either voltage limit or current limit is sufficient to protect inputs.

### DC Electrical Characteristics over Operating Temperature Range unless otherwise specified

| Symbol           | Parameter                    |                     | Min  | Тур | Max  | Units | V <sub>CC</sub> | Conditions                             |  |
|------------------|------------------------------|---------------------|------|-----|------|-------|-----------------|----------------------------------------|--|
| V <sub>IH</sub>  | Input HIGH Voltage           |                     | 2.0  |     |      | V     |                 | Recognized as a HIGH Signal            |  |
| V <sub>IL</sub>  | Input LOW Voltage            |                     |      |     | 0.8  | V     |                 | Recognized as a LOW Signal             |  |
| V <sub>CD</sub>  | Input Clamp Diode Voltage    |                     |      |     | -1.2 | V     | Min             | $I_{IN} = -18 \text{ mA}$              |  |
| V <sub>OH</sub>  | Output HIGH                  | 10% V <sub>CC</sub> | 2.5  |     |      | V     | Min             | $I_{OH} = -1 \text{ mA}$               |  |
|                  | Voltage                      | $5\% V_{CC}$        | 2.7  |     |      | V     | IVIIII          | $I_{OH} = -1 \text{ mA}$               |  |
| V <sub>OL</sub>  | Output LOW                   | 10% V <sub>CC</sub> |      |     | 0.5  | V     | Min             | I <sub>OL</sub> = 20 mA                |  |
|                  | Voltage                      | 10 % VCC            |      |     | 0.5  | V     | IVIIII          | 10L - 20 IIIA                          |  |
| I <sub>IH</sub>  | Input HIGH                   |                     |      |     | 5.0  | μА    | Max             | V <sub>IN</sub> = 2.7V                 |  |
|                  | Current                      |                     |      |     | 3.0  | μΛ    | IVIAX           | VIN - 2.7 V                            |  |
| I <sub>BVI</sub> | Input HIGH Current           |                     |      |     | 7.0  | μА    | Max             | $V_{IN} = 7.0V$                        |  |
|                  | Breakdown Test               |                     |      |     | 7.0  | μΑ    | IVIAX           | V <sub>IN</sub> = 7.0 V                |  |
| I <sub>CEX</sub> | Output HIGH                  |                     |      |     | 50   | μА    | Max             | $V_{OUT} = V_{CC}$                     |  |
|                  | Leakage Current              |                     |      |     | 30   | μΛ    | IVIAX           | VOUT - VCC                             |  |
| V <sub>ID</sub>  | Input Leakage                |                     | 4.75 |     |      | V     | 0.0             | $I_{ID} = 1.9 \mu A$                   |  |
|                  | Test                         |                     | 4.75 |     |      | •     | 0.0             | All Other Pins Grounded                |  |
| I <sub>OD</sub>  | Output Leakage               |                     |      |     | 3.75 | μА    | 0.0             | V <sub>IOD</sub> = 150 mV              |  |
|                  | Circuit Current              |                     |      |     | 3.73 | μΛ    | 0.0             | All Other Pins Grounded                |  |
| I <sub>IL</sub>  | Input LOW Current            |                     |      |     | -0.6 |       |                 | $V_{IN} = 0.5V (S_0 - S_2)$            |  |
|                  |                              |                     |      |     | -2.4 | mA    | Max             | $V_{IN} = 0.5V (A_0 - A_3, B_0 - B_3)$ |  |
|                  |                              |                     |      |     | -3.0 |       |                 | $V_{IN} = 0.5V (C_n)$                  |  |
| los              | Output Short-Circuit Current |                     | -60  |     | -150 | mA    | Max             | V <sub>OUT</sub> = 0V                  |  |
| I <sub>CC</sub>  | Power Supply Current         |                     |      | 54  | 81   | mA    | Max             |                                        |  |


## **AC Electrical Characteristics**

| Symbol           | Parameter                                              |     | $T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ |      | $T_A = 0$ °C to +70°C<br>$V_{CC} = +5.0V$<br>$C_L = 50$ pF |      | Units |  |
|------------------|--------------------------------------------------------|-----|---------------------------------------|------|------------------------------------------------------------|------|-------|--|
|                  |                                                        |     | $C_L = 50 \ pF$                       |      |                                                            |      |       |  |
|                  |                                                        | Min | Тур                                   | Max  | Min                                                        | Max  |       |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 3.0 | 8.1                                   | 12.0 | 3.0                                                        | 13.0 | ns    |  |
| t <sub>PHL</sub> | C <sub>n</sub> to F <sub>i</sub>                       | 2.5 | 5.7                                   | 8.0  | 2.5                                                        | 9.0  | 115   |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 4.0 | 10.4                                  | 15.0 | 3.5                                                        | 17.0 | ns    |  |
| $t_{PHL}$        | Any A or B to Any F                                    | 3.0 | 8.2                                   | 11.0 | 2.5                                                        | 12.0 | 118   |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 6.5 | 11.0                                  | 20.5 | 5.5                                                        | 21.5 | ns    |  |
| t <sub>PHL</sub> | S <sub>i</sub> to F <sub>i</sub>                       | 4.0 | 8.2                                   | 15.0 | 4.0                                                        | 17.5 | 115   |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 3.5 | 6.0                                   | 8.5  | 3.5                                                        | 11.0 | no    |  |
| $t_{PHL}$        | A <sub>i</sub> or B <sub>i</sub> to C <sub>n</sub> + 4 | 3.5 | 6.5                                   | 9.0  | 3.5                                                        | 10.5 | ns    |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 7.0 | 12.5                                  | 16.5 | 7.0                                                        | 17.5 | ns    |  |
| $t_{PHL}$        | S <sub>i</sub> to OVR or C <sub>n+4</sub>              | 5.0 | 9.0                                   | 12.0 | 5.0                                                        | 14.5 | 115   |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 2.5 | 5.6                                   | 8.0  | 2.0                                                        | 9.0  | ns    |  |
| t <sub>PHL</sub> | C <sub>n</sub> to C <sub>n+4</sub>                     | 3.5 | 6.3                                   | 9.0  | 2.0                                                        | 10.0 | ns    |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 3.5 | 8.0                                   | 11.0 | 3.5                                                        | 13.0 |       |  |
| $t_{PHL}$        | C <sub>n</sub> to OVR                                  | 2.5 | 7.1                                   | 10.0 | 2.5                                                        | 11.0 | ns    |  |
| t <sub>PLH</sub> | Propagation Delay                                      | 7.0 | 11.5                                  | 15.5 | 7.0                                                        | 16.5 | ns    |  |
| t <sub>PHL</sub> | A <sub>i</sub> or B <sub>i</sub> to OVR                | 3.0 | 8.0                                   | 10.5 | 3.0                                                        | 11.5 | 113   |  |



20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300" Wide Package Number M20B

## Physical Dimensions inches (millimeters) unless otherwise noted (Continued) 2.6±0.10 0.40 TYP -A-5.01 TYP 5.3±0.10 9.27 TYP 7.8 -B-3.9 0.2 C B A ALL LEAD TIPS 10 PIN #1 IDENT.-0.6 TYP 1.27 TYP -LAND PATTERN RECOMMENDATION ALL LEAD TIPS SEE DETAIL A 0.1 C 2.1 MAX. 1.8±0.1 L 0.15±0.05 0.15-0.25 -1.27 TYP 0.35-0.51 **♦** 0.12 **⋈** C A DIMENSIONS ARE IN MILLIMETERS GAGE PLANE 0.25 NOTES: A. CONFORMS TO EIAJ EDR-7320 REGISTRATION, ESTABLISHED IN DECEMBER, 1998. B. DIMENSIONS ARE IN MILLIMETERS. C. DIMENSIONS ARE EXCLUSIVE OF BURRS, MOLD FLASH, AND TIE BAR EXTRUSIONS. 0.60±0.15-SEATING PLANE 1.25 -M20DRevB1 DETAIL A 20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide Package Number M20D



20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300" Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

#### LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com