: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Order Number	Package Number	Package Description
74F543SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F543MSA	MSA24	24-Lead Shrink Small Outline Package (SSOP), EIAJ TYPE II, 5.3mm Wide
74F543PC	N24A	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-011, 0.600 Wide
74F543SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L. HIGH/LOW	Input $\mathbf{I}_{\mathbf{I H}} / \mathbf{I}_{\mathbf{I L}}$ Output $\mathbf{I}_{\mathbf{O H}} / \mathbf{I}_{\mathbf{O L}}$
$\overline{\mathrm{OEAB}}$	A-to-B Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{OEBA}}$	B-to-A Output Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{CEAB}}$	A-to-B Enable Input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{CEBA}}$	B-to-A Enable Input (Active LOW)	$1.0 / 2.0$	$20 \mu \mathrm{~A} /-1.2 \mathrm{~mA}$
$\overline{\mathrm{LEAB}}$	A-to-B Latch Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\overline{\mathrm{LEBA}}$	B-to-A Latch Enable Input (Active LOW)	$1.0 / 1.0$	$20 \mu \mathrm{~A} /-0.6 \mathrm{~mA}$
$\mathrm{~A}_{0}-\mathrm{A}_{7}$	A-to-B Data Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	B-to-A 3-STATE Outputs	$150 / 40(33.8)$	$-3 \mathrm{~mA} / 24 \mathrm{~mA}(20 \mathrm{~mA})$
$\mathrm{B}_{0}-\mathrm{B}_{7}$	B-to-A Data Inputs or	$3.5 / 1.083$	$70 \mu \mathrm{~A} /-650 \mu \mathrm{~A}$
	A-to-B 3-STATE Outputs	$600 / 106.6(80)$	$-12 \mathrm{~mA} / 64 \mathrm{~mA}(48 \mathrm{~mA})$

Functional Description

The F543 contains two sets of eight D-type latches, with separate input and output controls for each set. For data flow from A to B , for example, the A -to- B Enable (CEAB) input must be LOW in order to enter data from $A_{0}-A_{7}$ or take data from $B_{0}-B_{7}$, as indicated in the Data I/O Control Table. With $\overline{\text { CEAB }}$ LOW, a LOW signal on the A-to-B Latch Enable ($\overline{\mathrm{LEAB}}$) input makes the A-to-B latches transparent; a subsequent LOW-to-HIGH transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With $\overline{C E A B}$ and $\overline{O E A B}$ both LOW, the 3-STATE B output buffers are active and reflect the data present at the output of the A latches. Control of data flow from B to A is similar, but using the $\overline{C E B A}$, LEBA and OEBA inputs.

Data I/O Control Table

Inputs			Latch	Output
$\overline{\text { CEAB }}$	$\overline{\text { LEAB }}$	$\overline{\text { OEAB }}$	Status	Buffers
H	X	X	Latched	High Z
X	H	X	Latched	-
L	L	X	Transparent	-
X	X	H	-	High Z
L	X	L	-	Driving

$\mathrm{H}=\mathrm{HIGH}$ Voltage Level
L = LOW Voltage Level
X = Immaterial
A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, LEBA and OEBA

Logic Diagram

Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

Storage Temperature
Ambient Temperature under Bias Junction Temperature under Bias V_{CC} Pin Potential to Ground Pin Input Voltage (Note 2)
Input Current (Note 2)
Voltage Applied to Output
in HIGH State (with $\mathrm{V}_{\mathrm{CC}}=0 \mathrm{~V}$)
Standard Output
3-STATE Output
Current Applied to Output
in LOW State (Max)
$-65^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ $-55^{\circ} \mathrm{C}$ to $+150^{\circ} \mathrm{C}$ -0.5 V to +7.0 V -0.5 V to +7.0 V -30 mA to +5.0 mA
-0.5 V to V_{CC} -0.5 V to +5.5 V

Recommended Operating

 Conditions| Free Air Ambient Temperature | $0^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$ |
| :--- | ---: |
| Supply Voltage | +4.5 V to +5.5 V |

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics

Symbol	Parameter	Min	Typ	Max	Units	$\mathrm{V}_{\text {cc }}$	Conditions
V_{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
$\mathrm{V}_{\text {IL }}$	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
$\mathrm{V}_{C D}$	Input Clamp Diode Voltage			-1.2	V	Min	$\mathrm{I}_{\mathrm{N}}=-18 \mathrm{~mA}$
V_{OH}	Output HIGH Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $5 \% \mathrm{~V}_{\mathrm{CC}}$ $10 \% \mathrm{~V}_{\mathrm{CC}}$	$\begin{aligned} & \hline 2.5 \\ & 2.4 \\ & 2.7 \\ & 2.7 \\ & 2.0 \end{aligned}$			V	Min	$\begin{aligned} & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, B_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-1 \mathrm{~mA}\left(\mathrm{~A}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-3 \mathrm{~mA}\left(\mathrm{~A}_{n}, \mathrm{~B}_{n}\right) \\ & \mathrm{I}_{\mathrm{OH}}=-15 \mathrm{~mA}\left(\mathrm{~B}_{n}\right) \end{aligned}$
$\mathrm{V}_{\text {OL }}$	Output LOW $10 \% \mathrm{~V}_{\mathrm{CC}}$ Voltage $10 \% \mathrm{~V}_{\mathrm{CC}}$			$\begin{gathered} \hline 0.5 \\ 0.55 \end{gathered}$	V	Min	$\begin{aligned} & \mathrm{l}_{\mathrm{OL}}=24 \mathrm{~mA}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{l}_{\mathrm{OL}}=64 \mathrm{~mA}\left(\mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
I_{H}	Input HIGH Current			5.0	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {IN }}=2.7 \mathrm{~V}$
$\mathrm{I}_{\text {BVI }}$	Input HIGH Current Breakdown Test			7.0	$\mu \mathrm{A}$	Max	$\overline{(\overline{O E A B}, \overline{O E B A}, \overline{L E A B}}$,
$\mathrm{I}_{\text {BVIT }}$	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$\mathrm{V}_{\mathrm{IN}}=5.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {cex }}$	Output HIGH Leakage Current			50	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {CC }}$
$\mathrm{V}_{\text {ID }}$	Input Leakage Test	4.75			V	0.0	$\mathrm{I}_{\mathrm{ID}}=1.9 \mu \mathrm{~A}$ All Other Pins Grounded
1 OD	Output Leakage Circuit Current			3.75	$\mu \mathrm{A}$	0.0	$V_{I O D}=150 \mathrm{mV}$ All Other Pins Grounded
ILL	Input LOW Current			$\begin{aligned} & -0.6 \\ & -1.2 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{OEAB}}, \overline{\mathrm{OEBA}}) \\ & \mathrm{V}_{\mathrm{IN}}=0.5 \mathrm{~V}(\overline{\mathrm{CEAB}}, \overline{\mathrm{CEBA}}) \end{aligned}$
$\mathrm{I}_{\mathrm{IH}}+\mathrm{l}_{\text {OZH }}$	Output Leakage Current			70	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=2.7 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
$\mathrm{I}_{\text {IL }}+\mathrm{I}_{\text {OZL }}$	Output Leakage Current			-650	$\mu \mathrm{A}$	Max	$\mathrm{V}_{\text {OUT }}=0.5 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
los	Output Short-Circuit Current	$\begin{gathered} \hline-60 \\ -100 \end{gathered}$		$\begin{aligned} & -150 \\ & -225 \end{aligned}$	mA	Max	$\begin{aligned} & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}\right) \\ & \mathrm{V}_{\text {OUT }}=0 \mathrm{~V}\left(\mathrm{~B}_{\mathrm{n}}\right) \end{aligned}$
Izz	Bus Drainage Test			500	$\mu \mathrm{A}$	0.0V	$\mathrm{V}_{\text {OUT }}=5.25 \mathrm{~V}\left(\mathrm{~A}_{\mathrm{n}}, \mathrm{B}_{\mathrm{n}}\right)$
${ }^{\text {CCH }}$	Power Supply Current		67	100	mA	Max	$\mathrm{V}_{\mathrm{O}}=\mathrm{HIGH}$
${ }_{\text {cCL }}$	Power Supply Current		83	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ LOW
${ }^{\text {c Cz }}$	Power Supply Current		83	125	mA	Max	$\mathrm{V}_{\mathrm{O}}=$ HIGH Z

AC Electrical Characteristics

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{v}_{\mathrm{CC}}=+5.0 \mathrm{~V} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$			$\begin{gathered} \mathrm{T}_{\mathrm{A}}=0^{\circ} \mathrm{C} \text { to }+70^{\circ} \mathrm{C} \\ \mathrm{C}_{\mathrm{L}}=50 \mathrm{pF} \end{gathered}$		Units
		Min	Typ	Max	Min	Max	
tpLH	Propagation Delay	3.0	5.5	7.5	3.0	8.5	
$\mathrm{t}_{\text {PHL }}$	Transparent Mode A_{n} to B_{n} or B_{n} to A_{n}	3.0	5.0	6.5	3.0	7.5	ns
tpLH	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
$\mathrm{t}_{\text {PHL }}$	$\overline{\text { LEBA }}$ to A_{n}	4.5	8.5	11.0	4.5	12.5	
$\mathrm{tplh}^{\text {l }}$	Propagation Delay	4.5	8.5	11.0	4.5	12.5	ns
$\mathrm{t}_{\text {PHL }}$	$\overline{\mathrm{LEAB}}$ to B_{n}	4.5	8.5	11.0	4.5	12.5	
$t_{\text {tPLH }}$	Output Enable Time						ns
$t_{\text {PZL }}$	$\overline{\mathrm{OEBA}}$ or $\overline{\mathrm{OEAB}}$ to A_{n} or B_{n}	3.0	7.0	9.0	3.0	10.0	
	$\overline{\mathrm{CEBA}}$ or $\overline{\mathrm{CEAB}}$ to A_{n} or B_{n}	4.0	7.5	10.5	4.0	12.0	
$\mathrm{t}_{\text {PHZ }}$	Output Disable Time						
$t_{\text {pLz }}$	$\overline{\text { OEBA }}$ or $\overline{\mathrm{OEAB}}$ to A_{n} or B_{n}	1.0	6.0	8.0	1.0	9.0	
	$\overline{\mathrm{CEBA}}$ or $\overline{\mathrm{CEAB}}$ to A_{n} or B_{n}	2.5	5.5	10.5	2.5	11.5	

AC Operating Requirements

Symbol	Parameter	$\begin{gathered} \mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C} \\ \mathrm{~V}_{\mathrm{CC}}=+5.0 \mathrm{~V} \end{gathered}$		$\mathrm{T}_{\mathrm{A}}=\mathbf{0}^{\circ} \mathrm{C}$ to $+70^{\circ} \mathrm{C}$		Units
		Min	Max	Min	Max	
$\mathrm{t}_{\mathrm{s}}(\mathrm{H})$	Setup Time, HIGH or LOW	3.0		3.5		
$\mathrm{t}_{\mathrm{S}}(\mathrm{L})$	A_{n} or B_{n} to $\overline{\text { LEBA }}$ or $\overline{\text { LEAB }}$	3.0		3.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{H})$	Hold Time, HIGH or LOW	3.0		3.5		
$\mathrm{t}_{\mathrm{H}}(\mathrm{L})$	A_{n} or B_{n} to $\overline{L E B A}$ or $\overline{\text { LEAB }}$	3.0		3.5		
$\mathrm{t}_{\mathrm{W}}(\mathrm{L})$	Latch Enable, B to A or B to A Pulse Width, LOW	8.0		9.0		ns

Physical Dimensions inches（millimeters）unless otherwise noted

Physical Dimensions inches (millimeters) unless otherwise noted (Continued)

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
2. A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.
www.fairchildsemi.com
