

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

April 1988 Revised October 2000

74F563

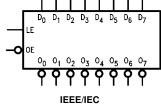
Octal D-Type Latch with 3-STATE Outputs

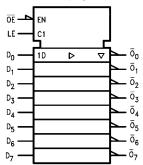
General Description

The 74F563 is a high-speed octal latch with buffered common Latch Enable (LE) and buffered common Output Enable (\overline{OE}) inputs.

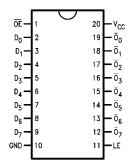
This device is functionally identical to the 74F573, but has inverted outputs.

Features


- Inputs and outputs on opposite sides of package allowing easy interface with microprocessors
- Useful as input or output port for microprocessors
- Functionally identical to 74F573


Ordering Code:

Order Number	Package Number	Package Description
74F563SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F563SJ	M20D	20-Lead Small Outline Package (SOP), EIAJ TYPE II, 5.3mm Wide
74F563PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide


Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

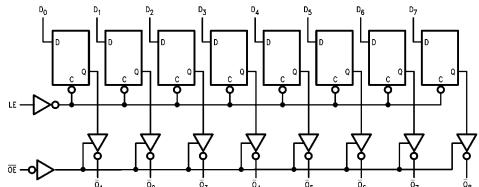
Logic Symbols

Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}		
	2000	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ –D ₇	Data Inputs	1.0/1.0	20 μA/–0.6 mA		
LE	Latch Enable Input (Active HIGH)	1.0/1.0	20 μA/-0.6 mA		
ŌĒ	3-STATE Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA		
$\overline{O}_0 - \overline{O}_7$	3-STATE Latch Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description


The 74F563 contains eight D-type latches with 3-STATE output buffers. When the Latch Enable (LE) input is HIGH, data on the $\mathbf{D}_{\mathbf{n}}$ inputs enters the latches. In this condition the latches are transparent, i.e., a latch output will change state each time its D input changes. When LE is LOW the latches store the information that was present on the D inputs a setup time preceding the HIGH-to-LOW transition of LE. The 3-STATE buffers are controlled by the Output Enable (OE) input. When OE is LOW, the buffers are in the bi-state mode. When OE is HIGH the buffers are in the high impedance mode but this does not interfere with entering new data into the latches.

Function Table

1		nputs		Internal	Output	
	iliputs		IIIterriai	Output	Function	
	OE	LE	D	Q	0	· director.
	Н	Χ	Χ	X Z F		High Z
	Н	Н	L	Н	Z	High Z
	Н	Н	Н	L	Z	High Z
	Н	L	Χ	NC	Z	Latched
	L	Н	L	Н	Н	Transparent
	L	Н	Н	L	L	Transparent
	L	L	Χ	NC	NC	Latched

- H = HIGH Voltage Level
- L = LOW Voltage Level
- X = Immaterial Z = High Impedance
- NC = No Change

Logic Diagram

 $\overline{0}_1 \qquad \overline{0}_2 \qquad \overline{0}_3 \qquad \overline{0}_4 \qquad \overline{0}_5 \qquad \overline{0}_6 \qquad \overline{0}_7$ Please note that this diagram is provided only for the understanding of logic operations and should not be used to estimate propagation delays.

Absolute Maximum Ratings(Note 1)

 $\begin{array}{ll} \mbox{Storage Temperature} & -65^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{Ambient Temperature under Bias} & -55^{\circ}\mbox{C to } +125^{\circ}\mbox{C} \\ \end{array}$

 $\label{eq:continuous} \begin{array}{lll} \mbox{Junction Temperature under Bias} & -55^{\circ}\mbox{C to } +150^{\circ}\mbox{C} \\ \mbox{V}_{\mbox{CC}} \mbox{ Pin Potential to Ground Pin} & -0.5\mbox{V to } +7.0\mbox{V} \end{array}$

Input Voltage (Note 2) -0.5V to +7.0V Input Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) $\qquad \qquad \text{twice the rated I_{OL} (mA)}$

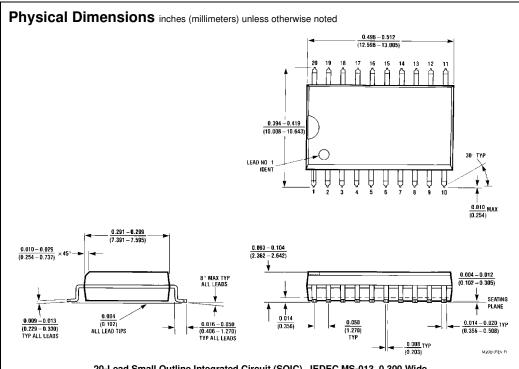
Recommended Operating Conditions

Free Air Ambient Temperature 0° C to +70°C Supply Voltage +4.5V to +5.5V

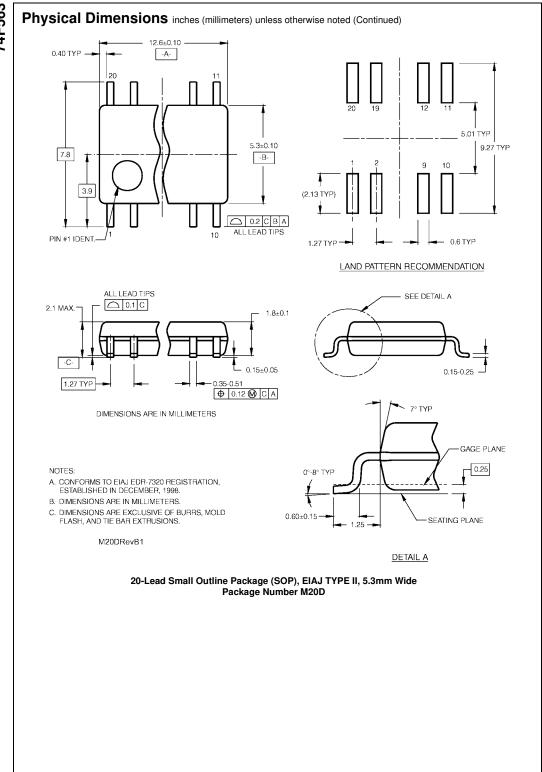
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

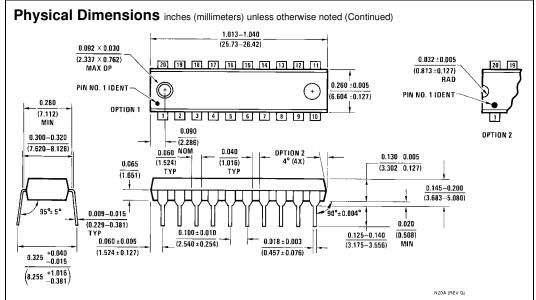
Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				0.8	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$	
		$5\% V_{CC}$	2.7			V	IVIIII	$I_{OH} = -1 \text{ mA}$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA	
I _{IH}	Input HIGH				5.0	4	Max	V 0.7V	
	Current				5.0	μА	IVIAX	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current				7.0	^	Max	V _{IN} = 7.0V	
	Breakdown Test		7.0 μΑ		IVIAX	V _{IN} = 7.0V			
I _{CEX}	Output HIGH				50		Max	V V	
	Leakage Current				30	μА	IVIAX	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage	4.75			V	0.0	$I_{ID} = 1.9 \mu A$		
	Test		4.75			V	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75		0.0	V _{IOD} = 150 mV	
	Circuit Current				3.73	μА	0.0	All Other Pins Grounded	
I _{IL}	Input LOW Current				-0.6	mA	Max	$V_{IN} = 0.5V$	
l _{OZH}	Output Leakage Current				50	μΑ	Max	V _{OUT} = 2.7V	
l _{OZL}	Output Leakage Current				-50	μΑ	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Bus Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
I _{CCL}	Power Supply Current			40	61	mA	Max	$V_O = LOW$	
I _{CCZ}	Power Supply Current			40	61	mA	Max	V _O = HIGH Z	

AC Electrical Characteristics


Symbol	Parameter	$T_{A} = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_{A} = -55^{\circ}C \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	Min	Max	
t _{PLH}	Propagation Delay	3.5		8.5	3.0	10.5	3.0	9.5	
t _{PHL}	D_n to \overline{O}_n	2.5		6.5	2.0	7.5	2.0	7.0	ns
t _{PLH}	Propagation Delay	4.5		9.5	4.0	11.0	4.0	10.5	20
t _{PHL}	LE to On	3.0		7.0	2.5	7.5	2.5	7.0	ns
t _{PZH}	Output Enable Time	2.0		7.5	2.0	9.5	2.0	9.0	
t _{PZL}		3.0		8.5	2.5	10.0	1.5	9.5	ns
t _{PHZ}	Output Disable Time	1.5		5.5	1.5	7.0	1.5	6.5	115
t _{PLZ}		1.5		5.5	1.5	5.5	1.5	5.5	


AC Operating Requirements

		$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$		$T_A = -55$ °C to +125°C $V_{CC} = +5.0V$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$		Units
Symbol	Parameter							
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.0		2.0		2.0		
$t_S(L)$	D _n to LE	2.0		2.0		2.0		ns
t _H (H)	Hold Time, HIGH or LOW	3.0		3.0		3.0		
$t_H(L)$	D _n to LE	3.0		3.0		3.0		ns
t _W (H)	LE Pulse Width, HIGH	4.0		4.0		4.0		ns

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com