

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

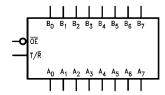
July 1989 Revised August 1999

74F640 • 74F645 Octal Bus Transceiver with 3-STATE Outputs

General Description

These devices are octal bus transceivers designed for asynchronous two-way data flow between the A and B busses. Both busses are capable of sinking 64 mA, have 3-STATE outputs, and a common output enable pin. The direction of data flow is determined by the transmit/receive (T/\overline{R}) input. The 74F645 is a high speed/low power version of the 74F245. The 74F640 is an inverting option of the 74F645

Features


- Designed for asynchronous two-way data flow between busses
- Outputs sink 64 mA
- \blacksquare Transmit/receive (T/ \overline{R}) input controls the direction of data flow
- 74F645 is a lower power, faster version of the 74F245
- 74F640 is an inverting option of the 74F645

Ordering Code:

Order Number	Package Number	Package Description
74F640SC	M20B	20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F640PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide
74F645PC	N20A	20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbol

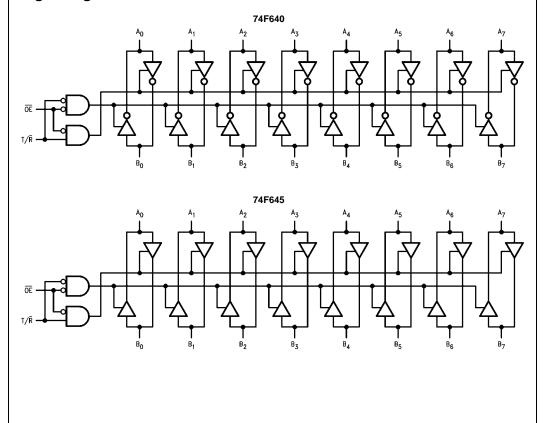
Connection Diagram

Unit Loading/Fan Out

Pin Names	Description	U.L.	Input I _{IH} /I _{IL}	
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}	
ŌĒ	Output Enable Input (Active LOW)	1.0/1.0	20 μA/–0.6 mA	
T/R	Transmit/Receive Input	1.0/1.0	20 μA/–0.6 mA	
A ₀ -A ₇	Side A Inputs or	3.5/0.667	70 μA/–0.4 mA	
	3-STATE Outputs	600/106.6	−12 mA/64 mA	
B ₀ –B ₇	Side B Inputs or	3.5/0.667	70 μA/–0.4 mA	
	3-STATE Outputs	600/106.6	-12 mA/64 mA	

Functional Description

The output enable (\overline{OE}) is active LOW. If the device is disabled $(\overline{OE}$ HIGH), the outputs are in the high impedance state. The transmit/receive input (T/\overline{R}) controls whether data is transmitted from the \underline{A} bus to the B bus or from the B bus to the A bus. When T/\overline{R} is LOW, B data is sent to the A bus. If T/\overline{R} is HIGH, A data is sent to the B bus.


Function Table

Inputs		Outputs				
OE	T/R	74F640	74F645			
L	L	Bus B data to Bus A	Bus B data to Bus A			
L	Н	Bus \overline{A} data to Bus B	Bus A data to Bus B			
Н	Х	Z	Z			

- H = HIGH Voltage Level

- L = LOW Voltage Level
 X = Don't Care
 Z = High Impedance State

Logic Diagram

Absolute Maximum Ratings(Note 1)

-65°C to +150°C

Storage Temperature Ambient Temperature under Bias -55°C to +125°C -55°C to +150°C

V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0V-30 mA to +5.0 mA

Input Current (Note 2)

Voltage Applied to Output in HIGH State (with $V_{CC} = 0V$)

Junction Temperature under Bias

Standard Output -0.5V to V_{CC} 3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA) ESD Last Passing Voltage (Min) 4000V

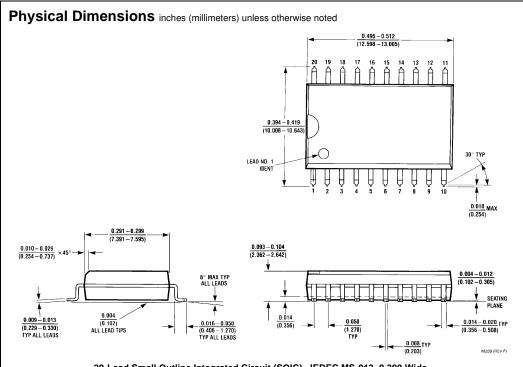
Recommended Operating Conditions

0°C to +70°C Free Air Ambient Temperature Supply Voltage +4.5V to +5.5V

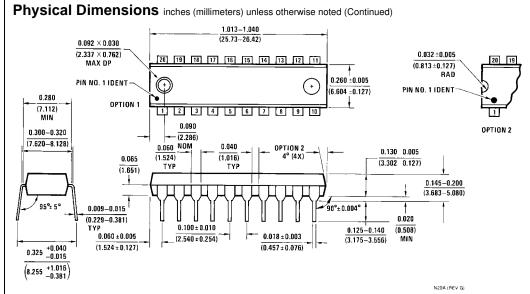
Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

 $\textbf{Note 2:} \ \textbf{Either voltage limit or current limit is sufficient to protect inputs.}$

DC Electrical Characteristics


Symbol	Parameter	Min	Тур	Max	Units	v _{cc}	Conditions
V _{IH}	Input HIGH Voltage	2.0			V		Recognized as a HIGH Signal
V _{IL}	Input LOW Voltage			0.8	V		Recognized as a LOW Signal
V _{CD}	Input Clamp Diode Voltage			-1.2	V	Min	I _{IN} = -18 mA (Non I/O Pins)
V _{OH}	Output HIGH 10% V _{CC}	2.0			V	Min	$I_{OH} = -15 \text{ mA } (A_n, B_n)$
V _{OL}	Output LOW 10% V _{CC}			0.55	V	Min	I _{OL} = 64 mA (A _n , B _n)
I _{IH}	Input HIGH Current			5.0	μА	Max	V _{IN} = 2.7V (Non I/O Pins)
I _{BVI}	Input HIGH Current Breakdown Test			7.0	μА	Max	V _{IN} = 7.0V (Non I/O Pins)
I _{BVIT}	Input HIGH Current Breakdown (I/O)			0.5	mA	Max	$V_{IN} = 5.5V (A_n, B_n)$
I _{CEX}	Output HIGH Leakage Current			50	μА	Max	$V_{OUT} = V_{CC}$
V _{ID}	Input Leakage Test	4.75			V	0.0	$I_{ID} = 1.9 \ \mu A$ All Other Pins Grounded
I _{OD}	Output Leakage Circuit Current			3.75	μА	0.0	V _{IOD} = 150 mV All Other Pins Grounded
I _{IL}	Input LOW Current			-0.6	mA	Max	V _{IN} = 0.5V (Non I/O Pins)
I _{IH} + I _{OZH}	Output Leakage Current			70	μΑ	Max	$V_{OUT} = 2.7V (A_n, B_n)$
I _{IL} + I _{OZL}	Output Leakage Current			-650	μΑ	Max	$V_{OUT} = 0.5V (A_n, B_n)$
los	Output Short-Circuit Current	-100		-225	mA	Max	$V_{OUT} = 0V$
I _{ZZ}	Bus Drainage Test			500	μΑ	0.0V	V _{OUT} = 5.25
Іссн	Power Supply Current (74F640)			80	mA	Max	$V_O = HIGH, V_{IN} = 0.2V$
I _{CCL}	Power Supply Current (74F640)			80	mA	Max	V _O = LOW
I _{CCZ}	Power Supply Current (74F640)			96	mA	Max	V _O = HIGH Z
Іссн	Power Supply Current (74F645)			65	mA	Max	V _O = HIGH
I _{CCL}	Power Supply Current (74F645)			80	mA	Max	$V_O = LOW, V_{IN} = 0.2V$
I _{CCZ}	Power Supply Current (74F645)			90	mA	Max	V _O = HIGH Z

AC Electrical Characteristics 74F640


	_	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to +70°C $V_{CC} = +5.0$ V $C_L = 50$ pF		Units
Symbol	Parameter						
		Min	Тур	Max	Min	Max	1
t _{PLH}	Propagation Delay	2.5		7.5	2.0	8.0	ns
t _{PHL}	A Input to B Output	2.0		7.0	2.0	7.0	115
t _{PLH}	Propagation Delay	2.5		7.5	2.0	8.0	
t _{PHL}	B Input to A Output	2.0		7.0	2.0	7.0	ns
t _{PZH}	Enable Time	2.5		7.5	2.0	9.0	ns
t_{PZL}	OE Input to A Output	2.5		8.0	2.0	8.5	
t _{PHZ}	Disable Time	1.5		7.0	1.0	7.5	
t_{PLZ}	OE Input to A Output	1.5		6.0	1.5	6.0	
t _{PZH}	Enable Time	2.5		7.5	2.0	9.0	ns
t_{PZL}	OE Input to B Output	2.5		8.0	2.0	8.5	
t _{PHZ}	Disable Time	1.5		7.0	1.0	7.5	
t _{PLZ}	OE Input to B Output	1.5		6.0	1.5	6.0	

AC Electrical Characteristics 74F645

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units
		Min	Тур	Max	Min	Max	
t _{PLH}	Propagation Delay	1.5		6.0	1.5	7.0	ns
t _{PHL}	A Input to B Output	2.0		7.0	2.0	7.5	115
t _{PLH}	Propagation Delay	1.5		6.0	1.5	7.0	ns
t _{PHL}	B Input to A Output	2.0		7.0	2.0	7.5	115
t _{PZH}	Enable Time	2.5		8.0	2.0	9.0	ns
t _{PZL}	OE Input to A Output	2.5		8.5	2.0	8.5	
t _{PHZ}	Disable Time	1.5		7.0	1.0	8.0	
t _{PLZ}	OE Input to A Output	1.0		5.5	1.0	5.5	
t _{PZH}	Enable Time	2.5		7.5	2.0	9.5	ns
t _{PZL}	OE Input to B Output	2.5		8.5	2.5	9.0	
t _{PHZ}	Disable Time	1.5		6.5	1.0	7.5	
t _{PLZ}	OE Input to B Output	1.0		5.5	1.0	5.5	

20-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide Package Number M20B

20-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N20A

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com