

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

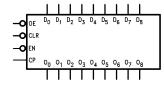
April 1988 Revised October 2000

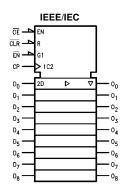
74F823 9-Bit D-Type Flip-Flop

General Description

The 74F823 is a 9-bit buffered register. It features Clock Enable and Clear which are ideal for parity bus interfacing in high performance microprogramming systems.

Features


- 3-STATE outputs
- Clock Enable and Clear


Ordering Code:

Order Number	Package Number	Package Description
74F823SC	M24B	24-Lead Small Outline Integrated Circuit (SOIC), JEDEC MS-013, 0.300 Wide
74F823SPC	N24C	24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide

Devices also available in Tape and Reel. Specify by appending the suffix letter "X" to the ordering code.

Logic Symbols

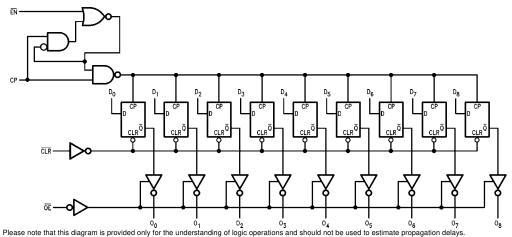
Connection Diagram

Unit Loading/Fan Out

Din Names	Description	U.L.	Input I _{IH} /I _{IL}		
Pin Names	Description	HIGH/LOW	Output I _{OH} /I _{OL}		
D ₀ -D ₈ OE	Data Inputs	1.0/1.0	20 μA/–0.6 mA		
OE	Output Enable Input	1.0/1.0	20 μA/-0.6 mA		
CLR	Clear	1.0/1.0	20 μA/–0.6 mA		
CP	Clock Input	1.0/2.0	20 μA/–1.2 mA		
EN	Clock Enable	1.0/1.0	20 μA/–0.6 mA		
O ₀ -O ₈	3-STATE Outputs	150/40 (33.3)	-3 mA/24 mA (20 mA)		

Functional Description

The 74F823 device consists of nine D-type edge-triggered flip-flops. It has 3-STATE true outputs and is organized in broadside pinning. The buffered Clock (CP) and buffered Output Enable (OE) are common to all flip-flops. The flip-flops will store the state of their individual D inputs that meet the setup and hold times requirements on the LOW-to-HIGH CP transition. With the OE LOW the contents of the flip-flops are available at the outputs. When the OE is HIGH, the outputs go to the high impedance state. Operation of the OE input does not affect the state of the flip-flops. In addition to the Clock and Output Enable pins, the 74F823 has Clear ($\overline{\text{CLR}}$) and Clock Enable ($\overline{\text{EN}}$) pins.


When the $\overline{\text{CLR}}$ is LOW and the $\overline{\text{OE}}$ is LOW, the outputs are LOW. When CLR is HIGH, data can be entered into the flip-flops. When EN is LOW, data on the inputs is transferred to the outputs on the LOW-to-HIGH clock transition. When the EN is HIGH, the outputs do not change state regardless of the data or clock inputs transitions. This device is ideal for parity bus interfacing in high performance systems.

Function Table

	Inputs		nputs Internal Output				Function		
OE	CLR	EN	СР	D	Q	0	Function		
Н	Н	L	Н	Χ	NC	Z	Hold		
Н	Н	L	L	Χ	NC	Z	Hold		
Н	Н	Н	Χ	Χ	NC	Z	Hold		
L	Н	Н	Χ	Χ	NC	NC	Hold		
Н	L	Χ	Χ	Χ	Н	Z	Clear		
L	L	Χ	Χ	Χ	Н	L	Clear		
Н	Н	L	_	Н	Н	Z	Load		
Н	Н	L	~	Н	L	Z	Load		
L	Н	L	_	L	Н	L	Data Available		
L	Н	L	~	Н	L	Н	Data Available		
L	Н	L	Н	Χ	NC	NC	No Change in Data		
L	Н	L	L	Χ	NC	NC	No Change in Data		

- L = LOW Voltage Level
- H = HIGH Voltage Level
- X = Immaterial
- Z = High Impedance
- = LOW-to-HIGH Transition

NC = No Change

Logic Diagram

Absolute Maximum Ratings(Note 1)

-65°C to +150°C Storage Temperature Ambient Temperature under Bias -55°C to +125°C

Junction Temperature under Bias -55°C to +150°C V_{CC} Pin Potential to Ground Pin -0.5V to +7.0VInput Voltage (Note 2) -0.5V to +7.0VInput Current (Note 2) -30 mA to +5.0 mA

Voltage Applied to Output

in HIGH State (with $V_{CC} = 0V$)

Standard Output -0.5V to V_{CC}

3-STATE Output -0.5V to +5.5V

Current Applied to Output

in LOW State (Max) twice the rated I_{OL} (mA)

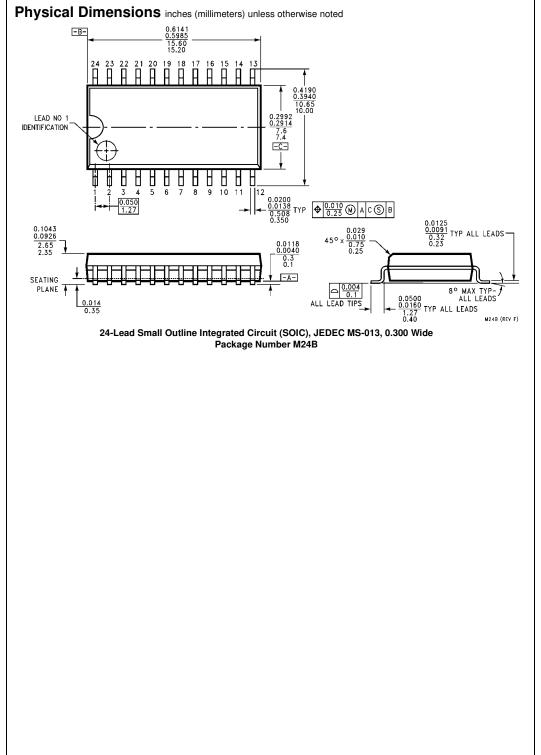
Recommended Operating Conditions

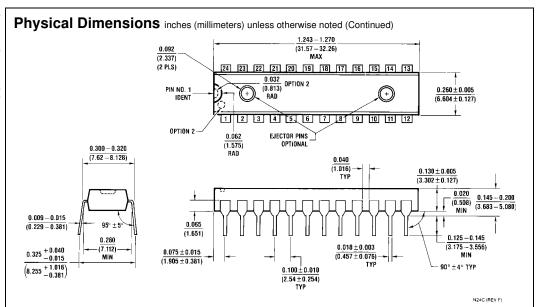
Free Air Ambient Temperature 0°C to +70°C Supply Voltage +4.5V to +5.5V

Note 1: Absolute maximum ratings are values beyond which the device may be damaged or have its useful life impaired. Functional operation under these conditions is not implied.

Note 2: Either voltage limit or current limit is sufficient to protect inputs.

DC Electrical Characteristics


Symbol	Parameter		Min	Тур	Max	Units	v _{cc}	Conditions	
V _{IH}	Input HIGH Voltage		2.0			V		Recognized as a HIGH Signal	
V _{IL}	Input LOW Voltage				8.0	V		Recognized as a LOW Signal	
V _{CD}	Input Clamp Diode Voltage				-1.2	V	Min	I _{IN} = -18 mA	
V _{OH}	Output HIGH	10% V _{CC}	2.5					I _{OH} = -1 mA	
	Voltage	10% V _{CC}	2.4			V	Min	$I_{OH} = -3 \text{ mA}$	
		5% V _{CC}	2.7			V	IVIII	$I_{OH} = -1 \text{ mA}$	
		5% V _{CC}	2.7					$I_{OH} = -3 \text{ mA}$	
V _{OL}	Output LOW Voltage	10% V _{CC}			0.5	V	Min	I _{OL} = 24 mA	
I _{IH}	Input HIGH				5.0	^	Max	V 0.7V	
	Current				5.0	μА	IVIAX	$V_{IN} = 2.7V$	
I _{BVI}	Input HIGH Current				7.0		May	V _{IN} = 7.0V	
	Breakdown Test				7.0	μА	Max	$v_{IN} = 7.0v$	
I _{CEX}	Output HIGH				50	^	May	V V	
	Leakage Current				50	μА	Max	$V_{OUT} = V_{CC}$	
V _{ID}	Input Leakage		4.75			V	0.0	$I_{ID} = 1.9 \mu A$	
	Test		4./5			V	0.0	All Other Pins Grounded	
I _{OD}	Output Leakage				3.75		0.0	V _{IOD} = 150 mV	
	Circuit Current				3.75	μА	0.0	All Other Pins Grounded	
I _{IL}	Input LOW				-0.6	mA	Max	$V_{IN} = 0.5V (\overline{OE}, \overline{CLR}, \overline{EN})$	
	Current				-1.2	mA	Max	V _{IN} = 0.5V (CP)	
l _{OZH}	Output Leakage Current				50	μА	Max	V _{OUT} = 2.7V	
lozL	Output Leakage Current				-50	μА	Max	V _{OUT} = 0.5V	
los	Output Short-Circuit Current		-60		-150	mA	Max	V _{OUT} = 0V	
I _{ZZ}	Buss Drainage Test				500	μΑ	0.0V	V _{OUT} = 5.25V	
Iccz	Power Supply Current			75	100	mA	Max	V _O = HIGH Z	


AC Electrical Characteristics

Symbol	Parameter	$T_A = +25^{\circ}C$ $V_{CC} = +5.0V$ $C_L = 50 \text{ pF}$			$T_{A} = -55^{\circ}V \text{ to } +125^{\circ}C$ $V_{CC} = +5.0V$ $C_{L} = 50 \text{ pF}$		$T_A = 0$ °C to +70°C $V_{CC} = +5.0V$ $C_L = 50$ pF		Units	
		Min	Тур	Max	Min	Max	Min	Max	i	
f _{MAX}	Maximum Clock Frequency	100	160		60		70		MHz	
t _{PLH}	Propagation Delay	2.0	5.6	9.5	2.0	10.5	2.0	10.5		
t _{PHL}	CP to O _n	2.0	5.2	9.5	2.0	10.5	2.0	10.5	ns	
t _{PHL}	Propagation Delay CLR to O _n	4.0	7.1	12.0	4.0	13.0	4.0	13.0	ns	
t _{PZH}	Output Enable Time	2.0	5.8	10.5	2.0	13.0	2.0	11.5		
t_{PZL}	OE to O _n	2.0	5.5	10.5	2.0	13.0	2.0	11.5	ns	
t _{PHZ}	Output Disable Time	1.5	2.9	7.0	1.0	7.5	1.5	7.5	115	
t_{PLZ}	OE to O _n	1.5	2.7	7.0	1.0	7.5	1.5	7.5		

AC Operating Requirements

		T _A = +	-25°C	$T_A = -55^{\circ}V \text{ to } +125^{\circ}C$		$T_A = 0$ °C to +70°C		
Symbol	Parameter	$V_{CC} = +5.0V$		$V_{CC} = +5.0V$		$\rm V_{CC} = +5.0V$		Units
		Min	Max	Min	Max	Min	Max	
t _S (H)	Setup Time, HIGH or LOW	2.5		4.0		3.0		
t _S (L)	D _n to CP	2.5		4.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.5		2.5		2.5		115
t _H (L)	D _n to CP	2.5		2.5		2.5		
t _S (H)	Setup Time, HIGH or LOW	4.5		5.0		5.0		
t _S (L)	EN to CP	2.5		3.0		3.0		ns
t _H (H)	Hold Time, HIGH or LOW	2.0		3.0		2.0		115
t _H (L)	EN to CP	0		1.0		0		
t _W (H)	CP Pulse Width	5.0		6.0		6.0		ns
$t_W(L)$	HIGH or LOW	5.0		6.0		6.0		115
t _W (L)	CLR Pulse Width, LOW	5.0		5.0		5.0		ns
t _{REC}	CLR Recovery Time	5.0		5.0		5.0		ns

24-Lead Plastic Dual-In-Line Package (PDIP), JEDEC MS-001, 0.300 Wide Package Number N24C

Fairchild does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and Fairchild reserves the right at any time without notice to change said circuitry and specifications.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF THE PRESIDENT OF FAIRCHILD SEMICONDUCTOR CORPORATION. As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in a significant injury to the user.
- A critical component in any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

www.fairchildsemi.com