

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

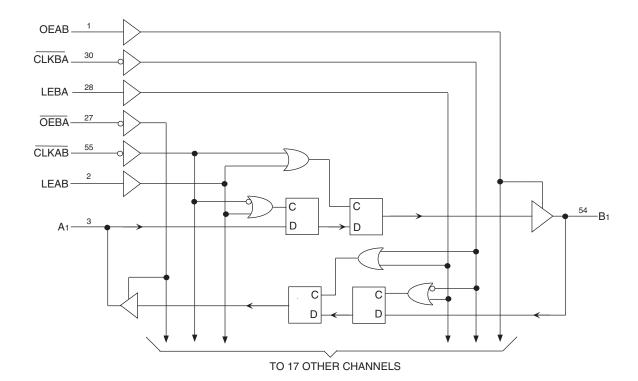
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAST CMOS 18-BIT REGISTERED TRANSCEIVER

IDT74FCT162500AT/CT

FEATURES:

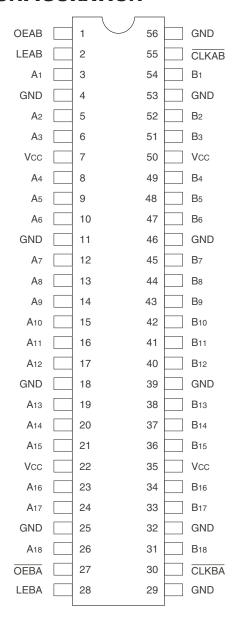

- 0.5 MICRON CMOS Technology
- . High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage ≤1µA (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- Vcc = 5V ±10%
- Balanced Output Drivers (±24mA)
- · Reduced system switching noise
- Typical Volp (Output Ground Bounce) < 0.6V at Vcc = 5V, TA = 25°C
- Available in SSOP package

DESCRIPTION:

The FCT162500T 18-bit registered transceivers are built using advanced dual metal CMOS technology. These high-speed, low-power 18-bit registered bus transceivers combine D-type latches and D-type flip-flops to allow data flow in transparent, latched and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\text{OEBA}}$), latch enable (LEAB and LEBA) and clock ($\overline{\text{CLKAB}}$ and $\overline{\text{CLKBA}}$) inputs. For A-to-B data flow, the device operates in transparent mode when LEAB is high. When LEAB is low, the A data is latched if $\overline{\text{CLKAB}}$ is held at a high or low logic level. If LEAB is low, the A bus data is stored in the latch/flip-flop on the high-to-low transition of $\overline{\text{CLKAB}}$. OEAB performs the output enable function on the B port. Data flow from B port to A port is similar but uses $\overline{\text{OEBA}}$, LEBA and $\overline{\text{CLKBA}}$. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT162500T have balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled output fall times—reducing the need for external series terminating resistors. The FCT162500T are plug-in replacements for the FCT16500T and ABT16500 for on-board bus interface applications.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2009

PIN CONFIGURATION

SSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description			
OEAB	A-to-B Output Enable Input			
ŌĒBĀ	B-to-A Output Enable Input (Active LOW)			
LEAB	A-to-B Latch Enable Input			
LEBA	B-to-A Latch Enable Input			
CLKAB	A-to-B Clock Input (Active LOW)			
CLKBA	B-to-A Clock Input (Active LOW)			
Ax	A-to-B Data Inputs or B-to-A 3-State Outputs			
Вх	B-to-A Data Inputs or A-to-B 3-State Outputs			

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	٧
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
lout	DC Output Current	-60 to +120	mA

NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All device terminals except FCT162XXX Output and I/O terminals.
- 3. Output and I/O terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	рF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE(1, 4)

	Inputs						
OEAB	LEAB	CLKAB	Ax	Вх			
L	Х	Х	Χ	Z			
Н	Н	Х	L	L			
Н	Н	X	Н	Н			
Н	L	\downarrow	L	L			
Н	L	\downarrow	Н	Н			
Н	L	Н	X	B ⁽²⁾			
Н	L	L	Χ	B ⁽³⁾			

- A-to-B data flow is shown. B-to-A data flow is similar but uses OEBA, LEBA, and CLKBA.
- 2. Output level before the indicated steady-state input conditions were established.
- Output level before the indicated steady-state input conditions were established, provided that CLKAB was LOW before LEAB went LOW.
- 4. H = HIGH Voltage Level
 - L = LOW Voltage Level
 - X = Don't Care
 - Z = High-impedance
 - ↓ = HIGH-to-LOW Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40°C to +85°C, VCC = 5.0V ± 10 %

Symbol	Parameter	Test Condit	ions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	_	_	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		_	_	0.8	V
lін	Input HIGH Current (Input pins) ⁽⁵⁾	Vcc = Max.	VI = VCC	_	_	±1	μΑ
	Input HIGH Current (I/O pins) ⁽⁵⁾			_	_	±1	
lıL	Input LOW Current (Input pins)(5)	VI = GND		_	_	±1	
	Input LOW Current (I/O pins) ⁽⁵⁾			_	_	±1	
lozh	High Impedance Output Current	Vcc = Max.	Vcc = Max. Vo = 2.7V		_	±1	μА
lozL	(3-State Output pins) ⁽⁵⁾	Vo = 0.5V		_	_	±1	
Vık	Clamp Diode Voltage	VCC = Min., IIN = −18mA		_	-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-80	-140	-250	mA
VH	Input Hysteresis	_		_	100	_	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	Vcc = Max. Vin = GND or Vcc		_	5	500	μA

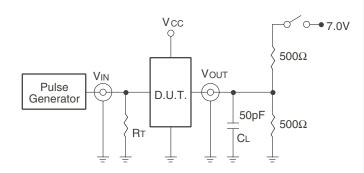
OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test C	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
IODL	Output LOW Current	VCC = 5V, VIN = VIH or V	$VCC = 5V$, $VIN = VIH or VIL$, $VO = 1.5V^{(3)}$		115	200	mA
lodh	Output HIGH Current	VCC = 5V, VIN = VIH or V	VCC = 5V, VIN = VIH or VIL, VO = 1.5V ⁽³⁾		-115	-200	mA
Vон	Output HIGH Voltage	Vcc = Min.	Iон = -24mA	2.4	3.3	_	V
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min.	Iон = 24mA	_	0.3	0.55	V
		VIN = VIH or VL					

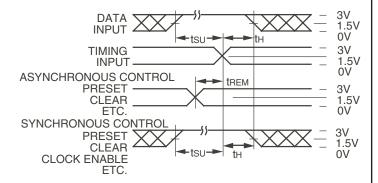
- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Duration of the condition can not exceed one second.
- 5. The test limit for this parameter is $\pm 5\mu A$ at $T_A = -55^{\circ}C$.

POWER SUPPLY CHARACTERISTICS

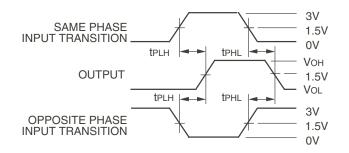
Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $Vin = 3.4V^{(3)}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open OEAB = OEBA = Vcc or GND One Input Togging 50% Duty Cycle	VIN = VCC VIN = GND	1	75	120	μΑ/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fcP = 10MHz (CLKAB) 50% Duty Cycle OEAB = OEBA = Vcc	VIN = VCC VIN = GND	1	0.8	1.7	mA
		LEAB = GND One Bit Toggling fi = 5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	1	1.3	3.2	
		Vcc = Max. Outputs Open fcP = 10MHz (CLKAB) 50% Duty Cycle OEAB = OEBA = Vcc	VIN = VCC VIN = GND	_	3.8	6.5 ⁽⁵⁾	
		LEAB = GND Eighteen Bits Toggling fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	8.5	20.8 ⁽⁵⁾	


- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
 - $IC = ICC + \Delta ICC DHNT + ICCD (fCPNCP/2 + fiNi)$
 - Icc = Quiescent Current (IccL, IccH and Iccz)
 - ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)
 - DH = Duty Cycle for TTL Inputs High
 - NT = Number of TTL Inputs at DH
 - ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
 - fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
 - NCP = Number of Clock Inputs at fcP
 - fi = Input Frequency
 - Ni = Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE


				74FCT1	62500AT	74FCT10	62500CT	
Symbol	Parameter		Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
fMAX	CLKAB or CLKBA frequency ⁽⁴⁾		CL = 50pF	_	150	-	150	MHz
tPLH	Propagation Delay		$RL = 500\Omega$	1.5	5.1	1.5	3.8	ns
tPHL	Ax to Bx or Bx to Ax							
tPLH	Propagation Delay			1.5	5.6	1.5	4.2	ns
tPHL	LEBA to Ax, LEAB to Bx							
tPLH .	Propagation Delay			1.5	5.6	1.5	4.4	ns
tPHL	CLKBA to Ax, CLKAB to Bx							
tpzh	Output Enable Time			1.5	6	1.5	4.8	ns
tPZL	OEBA to Ax, OEAB to Bx							
tPHZ	Output Disable Time			1.5	5.6	1.5	4.4	ns
tPLZ	OEBA to Ax, OEAB to Bx							
tsu	Set-up Time, HIGH or LOW			3	_	2.4	_	ns
	Ax to CLKAB, Bx to CLKBA							
tΗ	Hold Time, HIGH or LOW			0	_	0	_	ns
	Ax to CLKAB, Bx to CLKBA							
tsu	Set-upTime HIGH or LOW	Clock HIGH		3	_	2	-	ns
	Ax to LEAB, Bx to LEBA	Clock LOW		1.5	_	1.5	-	ns
tΗ	Hold Time, HIGH or LOW			1.5	_	0.5	_	ns
	Ax to LEAB, Bx to LEBA							
tw	LEAB or LEBA Pulse Width HIGH ⁽⁴⁾			3	_	3	_	ns
tw	CLKAB or CLKBA Pulse Width HIGH or LOW ⁽⁴⁾			3		3		ns
tSK(o)	Output Skew ⁽³⁾			_	0.5	_	0.5	ns
				I				

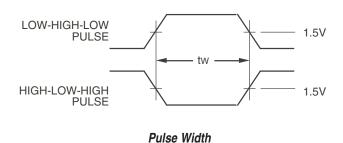
- 1. See test circuits and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delay
- 3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
- 4. This parameter is guaranteed but not tested.

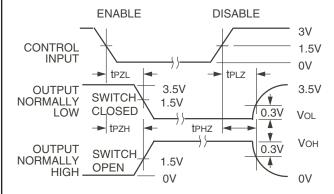

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

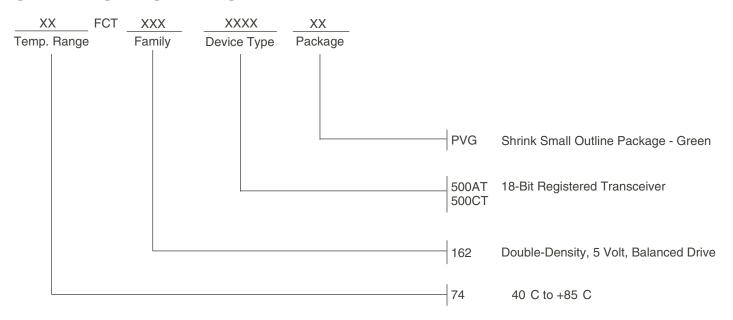

SWITCH POSITION


Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.



Enable and Disable Times

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

Datasheet Document History

09/06/09 Pg.6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS

6024 Silver Creek Valley Road San Jose, CA 95138 for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com