: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 0.5 MICRON CMOS Technology
- High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model ($C=200 \mathrm{pF}, \mathrm{R}=0$)
- Balanced Output Drivers ($\pm 24 \mathrm{~mA}$)
- Reduced system switching noise
- Typical Volp (Output Ground Bounce) $<0.6 \mathrm{~V}$ at Vcc $=5 \mathrm{~V}$, $\mathrm{TA}=25^{\circ} \mathrm{C}$
- Available in SSOP and TSSOP packages

DESCRIPTION:

The FCT162501T 18-bit registered transceivers are built using advanced dual metalCMOStechnology. Thesehigh-speed, low-power 18-bitregistered bustransceivers combineD-typelatches and D-typeflip-flopstoallow dataflow in transparent, latched and clocked modes. Data flow in each direction is controlled by output-enable (OEAB and $\overline{\mathrm{OEBA}}$), latch enable (LEAB andLEBA) and clock (CLKAB and CLKBA) inputs. For A-to-B data flow, the device operates intransparentmode whenLEAB ishigh. WhenLEAB is low, the A data is latched if CLKAB is held at a high or low logic level. IfLEAB is low, the A bus datais stored inthe latch/flip-flop on the low-to-hightransition of CLKAB. OEAB is theoutputenableforthe B port. Dataflow from the B porttothe A portis similar
 signal pins simplifies layout. All inputs are designed withhysteresis for improved noise margin.

The FCT162501T has balanced output drive with current limiting resistors. This offers low ground bounce, minimal undershoot, and controlled outputfall times-reducing the need for external series terminating resistors. The FCT162501T is a plug-in replacement fortheFCT16501T and ABT16501 for on-board bus interface applications.

FUNCTIONAL BLOCK DIAGRAM

[^0]
PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

PIN DESCRIPTION

Pin Names	Description
OEAB	A-to-BOutputEnable Input
$\bar{O} \bar{E} \bar{B} \bar{A}$	B-to-A Output Enable Input(Active LOW)
LEAB	A-to-BLatchEnable Input
LEBA	B-to-ALatch Enable Input
CLKAB	A-to-BClock Input
CLKBA	B-to-A Clock Input
Ax	A-to-BDataInputsorB-to-A 3-StateOutputs
Bx	B-to-ADataInputsorA-to-B3-StateOutputs

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to 7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to Vcc +0.5	V
TstG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
lout	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Output and I/O terminals for FCT162XXX.

CAPACITANCE ($\mathrm{T}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}$)

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	VIN $=0 \mathrm{~V}$	3.5	6	pF
Cout	Output Capacitance	VouT $=0 \mathrm{~V}$	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE(1,4)

Inputs				
OEAB	LEAB	CLKAB	Ax	Bx
L	X	X	X	Z
H	H	X	L	L
H	H	X	H	H
H	L	\uparrow	L	L
H	L	\uparrow	H	H
H	L	L	X	$\mathrm{B}^{(2)}$
H	L	H	X	$\mathrm{B}^{(3)}$

NOTES:

1. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}, ~ L E B A$, and CLKBA.
2. Output level before the indicated steady-state input conditions were established.
3. Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.
4. H = HIGH Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-impedance
$\uparrow=$ LOW-to-HIGH Transition

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VcC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
lH	Input HIGH Current (Input pins) ${ }^{(5)}$	$\mathrm{Vcc}=$ Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
IIL	Input LOW Current (Input pins) ${ }^{(5)}$		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
	Input LOW Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
IozH	High Impedance Output Current$(3 \text {-State Output pins })^{(5)}$	$V C C=M a x$.	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
IOzL			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VCC}=$ Min., $\mathrm{liN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
Ios	Short Circuit Current	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-250	mA
VH	Input Hysteresis	-		-	100	-	mV
ICCL ICCH ICCZ	Quiescent Power Supply Current	$\begin{aligned} & \text { VCC = Max. } \\ & \text { VIN = GND or VCC } \end{aligned}$		-	5	500	$\mu \mathrm{A}$

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$	Min.	Typ. ${ }^{(2)}$	Max.	Unit	
IODL	OutputLOWCurrent	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{VO}=1.5 \mathrm{~V}{ }^{(3)}$	60	115	200	mA	
IODH	Output HIGH Current	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$	-60	-115	-200	mA	
VOH	Output HIGH Voltage	$\mathrm{VCC}=\mathrm{Min}$. $\mathrm{VIN}=\mathrm{VIH}$ or VIL	IOH $=-24 \mathrm{~mA}$	2.4	3.3	-	V
VOL	OutputLOWVoltage	$\mathrm{VCC}=\mathrm{Min}$. $\mathrm{VIN}=\mathrm{VIH}$ or VIL	IOL $=24 \mathrm{~mA}$	-	0.3	0.55	V

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Duration of the condition can not exceed one second.
5. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{TA}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lc}$ c	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$		-	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	Vcc = Max. Outputs Open $O E A B=\overline{O E B A}=V C C$ or GND One Input Togging 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	75	120	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
Ic	Total Power Supply Current ${ }^{(6)}$	Vcc = Max. Outputs Open $\mathrm{fcP}=10 \mathrm{MHz}$ (CLKAB) 50\% Duty Cycle $\begin{aligned} & \mathrm{OEAB}=\overrightarrow{\mathrm{OEBA}}=\mathrm{VCC} \\ & \mathrm{LEAB}=\mathrm{GND} \end{aligned}$ One Bit Toggling $\mathrm{fi}=5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.8	1.7	mA
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.3	3.2	
		Vcc = Max. Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}$ (CLKAB) 50\% Duty Cycle $O E A B=\overline{O E B A}=V C C$ LEAB = GND Eighteen Bit Toggling $\mathrm{fi}_{\mathrm{i}}=2.5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	3.8	$6.5{ }^{(5)}$	
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	8.5	$20.8{ }^{(5)}$	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(\mathrm{V} / \mathrm{N}=3.4 \mathrm{~V})$. All other inputs at Vcc or GND .
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + linputs + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICCC}$ DHNT $+\mathrm{ICCD}(\mathrm{fcPNCP} / 2+$ fiNi)
IcC = Quiescent Current (ICcL, ICCH and Iccz)
$\Delta \mathrm{lcc}=$ Power Supply Current for a TTL High Input $(\mathrm{Vin}=3.4 \mathrm{~V})$.
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fcP
fi = Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

Symbol	Parameter		Condition ${ }^{(1)}$	74FCT162501AT		74FCT162501CT		Unit	
			Min. ${ }^{(2)}$	Max.	Min. ${ }^{(2)}$	Max.			
fmax	CLKAB or CLKBA frequency ${ }^{(4)}$			$\begin{aligned} & C L=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	-	150	-	150	MHz
$\begin{aligned} & \text { tPLH } \\ & \text { tPH } \end{aligned}$	PropagationDelay Ax to Bx or Bx to Ax		1.5		5.1	1.5	4.3	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	PropagationDelay LEBA to Ax, LEAB to Bx		1.5		5.6	1.5	4.4	ns	
$\begin{aligned} & \text { tPL } \\ & \text { tPH } \end{aligned}$	PropagationDelay CLKBA to Ax, CLKAB to Bx		1.5		5.6	1.5	4.4	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $\overline{\text { OEBA }}$ to Ax, OEAB to Bx		1.5		6	1.5	4.8	ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time $\overline{O E B A}$ to $A x$, OEAB to $B x$		1.5		5.6	1.5	5.2	ns	
tsu	Set-up Time, HIGH or LOW Ax to CLKAB, Bx to CLKBA		3		-	2.4	-	ns	
H	Hold Time, HIGH or LOW Ax to CLKAB, Bx to CLKBA		0		-	0	-	ns	
tSU			3		-	2	-	ns	
	Ax to LEAB, Bx to LEBA	Clock HIGH	1.5		-	1.5	-	ns	
H	Hold Time, HIGH or LOW Ax to LEAB, Bx to LEBA		1.5		-	0.5	-	ns	
tw	LEAB or LEBA Pulse Width HIGH ${ }^{(4)}$		3		-	3	-	ns	
tw	CLKAB or CLKBA Pulse Width HIGH or LOW ${ }^{(4)}$		3		-	3	-	ns	
tSK(0)	OutputSkew ${ }^{(3)}$		-		0.5	-	0.5	ns	

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. Skew between any two outputs of the same package switching in the same direction. This parameter is guaranteed by design.
4. This parameter is guaranteed but not tested.

TEST CIRCUITS AND WAVEFORMS

Test Circuits For all Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:
$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns} ; \mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

Datasheet Document History

09/06/09 Pg. $6 \quad$ Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

[^0]: TO 17 OTHER CHANNELS

