: ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

FEATURES:

- 0.5 MICRON CMOS Technology
- Typical tsk(0) (Output Skew) < 250ps, clocked mode
- Low input and output leakage $\leq 1 \mu \mathrm{~A}$ (max)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200 V using machine model ($\mathrm{C}=200 \mathrm{pF}, \mathrm{R}=0$)
- Vcc $=5 \mathrm{~V} \pm 10 \%$
- Balanced Output Drivers:
- $\pm 24 \mathrm{~mA}$ (industrial)
- $\pm 16 \mathrm{~mA}$ (military)
- Series current limiting resistors
- Generate/Check, Check/Check modes
- Open drain parity error allows wire-OR
- Available in the following packages:
- Industrial: SSOP, TSSOP
- Military: CERPACK

DESCRIPTION:

The FCT162511T 16-bit registered/latched transceiver with parity is built using advanced dual metal CMOS technology. This high-speed, low-power transceiver combines D-type latches and D-type flip-flops to allow data flow in transparent, latched, or clocked modes. The device has a parity generator/ checkerintheA-to-Bdirection and aparity checkerintheB-to-Adirection. Error checking is doneathebytelevel withseparate paritybitsforeach byte. Separate error flags exits for each direction with a single error flag indicating an errorfor either byte in the A-to-Bdirection and a second errorflag indicating a nerrorfor eitherbyte inthe B-to-A direction. The parity errorflags are open drain outputs which can betiedtogetherand/ortied with flagsfrom otherdevicestoformasingle error flag or interrupt. The parity error flags are enabled by the $\overline{\mathrm{E} x x}$ control pins allowing the designer to disable the error flag during combinational transitions.
The control pins LEAB, CLKAB, and $\overline{\mathrm{OEAB}}$ control operation in the A-to-B direction while LEBA, CLKBA, and $\overline{\text { EEBA }}$ control the B-to-A direction. $\overline{\text { GEN } / ~}$ CHK is onlyforthe selection of A-to-B operation. The B-to-A direction is always incheckingmode. TheODD/EVEN selectis commonbetweenthetwodirections. Except for the ODD/EVEN control, independent operation can be achieved between the two directions by using the corresponding control lines.

FUNCTIONAL BLOCK DIAGRAM

BLOCK DIAGRAM

PIN CONFIGURATION

SSOP/ TSSOP/ CERPACK TOP VIEW

ABSOLUTE MAXIMUM RATINGS(1)

Symbol	Description	Max	Unit
VTERM $^{(2)}$	Terminal Voltage with Respect to GND	-0.5 to 7	V
VTERM $^{(3)}$	Terminal Voltage with Respect to GND	-0.5 to VcC +0.5	V
TstG	Storage Temperature	-65 to +150	${ }^{\circ} \mathrm{C}$
Iout	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
2. All device terminals except FCT162XXX Output and I/O terminals.
3. Output and I/O terminals for FCT162XXX.

CAPACITANCE $\left(\mathrm{TA}_{\mathrm{A}}=+25^{\circ} \mathrm{C}, \mathrm{F}=1.0 \mathrm{MHz}\right)$

Symbol	Parameter ${ }^{(1)}$	Conditions	Typ.	Max.	Unit
CIN	Input Capacitance	$\mathrm{VIN}=0 \mathrm{~V}$	3.5	6	pF
$\mathrm{CI/O}$	I/O Capacitance	Vout $=0 \mathrm{~V}$	3.5	8	pF
Co	Open Drain Capacitance	Vout $=0 \mathrm{~V}$	3.5	6	pF

PIN DESCRIPTION

Pin Names	Description
$\overline{\mathrm{O}} \overline{\mathrm{A}} \overline{\mathrm{B}}$	A-to-BOutput Enable Input(Active LOW)
$\bar{O} \bar{E} \bar{B} \bar{A}$	B-to-A Output Enable Input(Active LOW)
LEAB	A-to-BLatch Enable Input
LEBA	B-to-A Latch Enable Input
CLKAB	A-to-B Clock Input
CLKBA	B-to-A Clock Input
Ax	A-to-B Data Inputs orB-to-A3-StateOutputs
Bx	B-to-A Data Inputs or A-to-B3-State Outputs
$\overline{\mathrm{P} E \mathrm{R} \bar{A}}$	Parity Error (Open Drain) on A Outputs
$\overline{\text { PER } \bar{B}}$	Parity Error (Open Drain) on B Outputs
PAx ${ }^{(1)}$	A-to-B Parity Input, B-to-A Parity Output
PBx	B-to-A Parity Input, A-to-B Parity Output
ODD/EVEN	Parity Mode Selection Input
$\overline{\mathrm{G} E} \mathrm{~N} / \mathrm{CHK}$	A to B Port Generate or Check Mode Input

NOTE:

1. The PAx pin input is internally disabled during parity generation. This means that when generating parity in the A to B direction there is no need to add a pull up resistor to guarantee state. The pin will still function properly as the parity output for the B to A direction.

FUNCTION TABLE(1,4)

Inputs				Outputs
$\overline{\mathrm{O} E \bar{A} \bar{B}}$	LEAB	CLKAB	Ax	Bx
H	X	X	X	Z
L	H	X	L	L
L	H	X	H	H
L	L	\uparrow	L	L
L	L	\uparrow	H	H
L	L	L	X	$\mathrm{B}^{(2)}$
L	L	H	X	$\mathrm{B}^{(3)}$

NOTES:

1. A-to-B data flow is shown. B-to-A data flow is similar but uses $\overline{O E B A}$, LEBA, and CLKBA.
2. Output level before the indicated steady-state input conditions were established.
3. Output level before the indicated steady-state input conditions were established, provided that CLKAB was HIGH before LEAB went LOW.
4. $\mathrm{H}=\mathrm{HIGH}$ Voltage Level

L = LOW Voltage Level
X = Don't Care
Z = High-impedance
$\uparrow=$ LOW-to-HIGH Transition

FUNCTION TABLE

(PARITY CHECKING) $(1,2,3,4)$

$\mathrm{A}_{0}-\mathrm{A} 7 \text { and } \mathrm{P}_{\mathrm{A} 1}(5)$ Number of inputs that are high	ODD/EVEN	$\overline{\text { PERB }}$
1,3,5,7 or 9	L	L
1, 3, 5, 7 or 9	H	$\mathrm{H}^{(6)}$
0, 2, 4, 6 or 8	L	$\mathrm{H}^{(6)}$
0, 2, 4, 6 or 8	H	L

NOTES:

1. Conditions shown are for $\overline{\mathrm{GEN}} / \mathrm{CHK}=\mathrm{H}, \overline{\mathrm{OEAB}}=\mathrm{L}, \overline{\mathrm{OEBA}}=\mathrm{H}$.
2. A-to-B parity checking is shown. B-to-A parity checking is similar but uses $\overline{\mathrm{OEBA}}=\mathrm{L}, \overline{\mathrm{OEAB}}$ $=\mathrm{H}$ and errors will be indicated on PERA.
3. In parity checking mode the parity bits will be transmitted unchanged along with the corresponding data regardless of parity errors (PB1 = PA1).
4. The response shown is for $L E A B=H$. If $L E A B=L$ then $C L K A B$ will control as an edge triggered clock.
5. Conditions shown are for the byte A0-A7 and PA1. The byte A8-A15 and PA2 is similiar.
6. The parity error flag PERB is a combined flag for both bytes A0-A7 and A8-A15. If a parity error occurs on either byte $\overline{P E R B}$ will go low. $\overline{P E R B}$ is an open drain output which must be externally pulled up to achieve a logic HIGH.

FUNCTION TABLE (PARITY GENERATION) $(1,2,3,4,5)$

A0 - A7 Number of inputs that are high	ODD/EVEN	PB1
$1,3,5$ or 7	L	H
$1,3,5$ or 7	H	L
$0,2,4,6$ or 8	L	L
$0,2,4,6$ or 8	H	H

NOTES:

1. Conditions shown are for $\overline{G E N} / C H K=L, \overline{\mathrm{OEAB}}=\mathrm{L}, \overline{\mathrm{OEBA}}=\mathrm{H}$.
2. A-to-B parity checking is shown. B-to-A is capable of parity checking while A-to-B is performing generation. B-to-A will not generate parity.
3. The response shown is for $L E A B=H$. If $L E A B=L$ then CLKAB will control as an edge triggered clock.
4. Conditions shown are for the byte A-A7. The byte A8-A15 is similiar but will output the parity on PB2.
5. The error flag PERB will remain in a high state during parity generation.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:
Industrial: $\mathrm{TA}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$; Military: $\mathrm{TA}=-55^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}, \mathrm{VCC}=5.0 \mathrm{~V} \pm 10 \%$

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
VIH	Input HIGH Level	Guaranteed Logic HIGH Level		2	-	-	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		-	-	0.8	V
1 H	Input HIGH Current (Input pins) ${ }^{(5)}$	Vcc $=$ Max.	$\mathrm{VI}=\mathrm{Vcc}$	-	-	± 1	$\mu \mathrm{A}$
	Input HIGH Current (I/O pins) ${ }^{(5)}$			-	-	± 1	
IIL	Input LOW Current (Input pins) ${ }^{(5)}$		$\mathrm{VI}=\mathrm{GND}$	-	-	± 1	
	Input LOW Current (//O pins) ${ }^{(5)}$			-	-	± 1	
lozH	High Impedance Output Current (3-State Output pins) ${ }^{(5)}$	$\mathrm{Vcc}=$ Max .	$\mathrm{Vo}=2.7 \mathrm{~V}$	-	-	± 1	$\mu \mathrm{A}$
Iozl			$\mathrm{Vo}=0.5 \mathrm{~V}$	-	-	± 1	
VIK	Clamp Diode Voltage	$\mathrm{VCC}=$ Min., $\mathrm{liN}=-18 \mathrm{~mA}$		-	-0.7	-1.2	V
los	Short Circuit Current	$\mathrm{Vcc}=\mathrm{Max} ., \mathrm{Vo}=\mathrm{GND}^{(3)}$		-80	-140	-250	mA
VH	Input Hysteresis	-		-	100	-	mV
$\begin{aligned} & \mathrm{ICCL} \\ & \mathrm{ICCH} \\ & \mathrm{ICCZ} \end{aligned}$	Quiescent Power Supply Current	$\begin{aligned} & \text { Vcc = Max. } \\ & \text { VIN = GND or Vcc } \end{aligned}$		-	5	500	$\mu \mathrm{A}$

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter		Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
IODL	Output LOW Current	(I/O pins)	$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or $\mathrm{VIL}, \mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$		60	115	200	mA
		(Open Drain)			-	250	-	mA
IODH	Output HIGH Current		$\mathrm{VCC}=5 \mathrm{~V}, \mathrm{VIN}=\mathrm{VIH}$ or VIL, $\mathrm{Vo}=1.5 \mathrm{~V}^{(3)}$		-60	-115	-200	mA
IoFF	OutputPowerOffLeakageCurrent (OpenDrain) ${ }^{(5)}$		$\mathrm{Vcc}=0, \mathrm{Vo} \leq 5.5 \mathrm{~V}$		-	-	± 1	$\mu \mathrm{A}$
VoH	Output HIGH Voltage (I/O pins)		$\begin{aligned} & \text { VCC = Min. } \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\begin{aligned} & \mathrm{IOH}=-16 \mathrm{~mA} \text { MIL } \\ & \mathrm{IOH}=-24 \mathrm{~mA} \text { IND } \end{aligned}$	2.4	3.3	-	V
VoL	OutputLOW Voltage	(I/O pins)	$\begin{aligned} & \text { VCC }=\operatorname{Min} . \\ & \text { VIN }=\text { VIH or VIL } \end{aligned}$	$\begin{aligned} & \mathrm{IOL}=16 \mathrm{~mA} \mathrm{MIL} \\ & \mathrm{IOL}=24 \mathrm{~mA} \text { IND } \end{aligned}$	-	0.3	0.55	V
		(Open Drain)		$\begin{aligned} & \mathrm{IOL}=48 \mathrm{~mA} \mathrm{MIL} \\ & \mathrm{IOL}=64 \mathrm{~mA} \text { IND } \end{aligned}$	-	0.3	0.55	V

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
4. Duration of the condition can not exceed one second.
5. The test limit for this parameter is $\pm 5 \mu \mathrm{~A}$ at $\mathrm{T}_{\mathrm{A}}=-55^{\circ} \mathrm{C}$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ${ }^{(1)}$		Min.	Typ. ${ }^{(2)}$	Max.	Unit
$\Delta \mathrm{lcc}$	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{aligned} & \mathrm{VCC}=\mathrm{Max} . \\ & \mathrm{VIN}=3.4 \mathrm{~V}^{(3)} \end{aligned}$	All other Input Pins	-	0.5	1.5	mA
			Parity Input Pins (PAx, PBx)	-	1	2.5	
ICCD	Dynamic Power Supply Current ${ }^{(4)}$	$\mathrm{Vcc}=\mathrm{Max} .$ Outputs Open $\overline{\mathrm{OEAB}}=\mathrm{GND}, \overline{\mathrm{OEBA}}=\mathrm{VCC}$ One Input Togging 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	75	120	$\begin{gathered} \mu \mathrm{A} / \\ \mathrm{MHz} \end{gathered}$
Ic	Total Power Supply Current ${ }^{(6)}$	Vcc = Max. Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}(\mathrm{CLKAB})$ 50\% Duty Cycle $\overline{\mathrm{OEAB}}=\mathrm{GND}, \overline{\mathrm{OEBA}}=\mathrm{VCC}$ LEAB = GND One Bit Toggling $\mathrm{fi}=5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	0.8	1.7	mA
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	1.3	3.2	
		Vcc = Max. Outputs Open $\mathrm{fCP}=10 \mathrm{MHz}$ (CLKAB) 50\% Duty Cycle $\begin{aligned} & \mathrm{OEAB}=\mathrm{GND}, \overline{\mathrm{OEBA}}=\mathrm{VCC} \\ & \mathrm{LEAB}=\mathrm{GND} \end{aligned}$ Eighteen Bits Toggling $\mathrm{fi}_{\mathrm{i}}=2.5 \mathrm{MHz}$ 50\% Duty Cycle	$\begin{aligned} & \mathrm{VIN}=\mathrm{VCC} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	3.8	$6.5{ }^{(5)}$	
			$\begin{aligned} & \mathrm{VIN}=3.4 \mathrm{~V} \\ & \mathrm{VIN}=\mathrm{GND} \end{aligned}$	-	9	$21.8{ }^{(5)}$	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
2. Typical values are at $\mathrm{Vcc}=5.0 \mathrm{~V},+25^{\circ} \mathrm{C}$ ambient.
3. Per TTL driven input $(\mathrm{V} I N=3.4 \mathrm{~V})$. All other inputs at $\mathrm{V} c \mathrm{c}$ or GND .
4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
6. IC = IQUIESCENT + IINPUTS + IDYNAMIC
$\mathrm{IC}=\mathrm{ICC}+\Delta \mathrm{ICC} D \mathrm{DNT}+\mathrm{ICCD}(\mathrm{fCPNCP} / 2+\mathrm{fiNi})$
IcC = Quiescent Current (ICCL, ICch and Iccz)
$\Delta \mathrm{Icc}=$ Power Supply Current for a TTL High Input $(\mathrm{VIN}=3.4 \mathrm{~V})$
Dh = Duty Cycle for TTL Inputs High
NT = Number of TTL Inputs at DH
ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)
fCP = Clock Frequency for Register Devices (Zero for Non-Register Devices)
NCP = Number of Clock Inputs at fcP
fi = Input Frequency
$\mathrm{Ni}=$ Number of Inputs at fi

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (PROPAGATION DELAYS)

Symbol	Parameter		Condition ${ }^{(1)}$	FCT162511AT				FCT162511CT				Unit	
			Ind.	Mil.		Ind.		Mil.					
			Min. ${ }^{(2)}$	Max.									
tPLH tPHL	Propagation Delay, Ax to Bx or Bx to	Ax to PBx PBx to PAx		$\begin{aligned} & \mathrm{CL}=50 \mathrm{pF} \\ & \mathrm{RL}=500 \Omega \end{aligned}$	1.5	5	1.5	5.3	1.5	4.2	1.5	4.5	ns
tPLH tPHL	PropagationDelay Ax to PBx	GEN/CHK LOW			1.5	7.5	1.5	8	1.5	6.5	1.5	6.8	ns
tPL(${ }^{(3)}$	PropagationDelay Ax to PERB, PAx to $\overline{\text { PERB }}$			1.5	9	1.5	9	1.5	7.5	1.5	7.8	ns	
tPHL				1.5	8	1.5	8	1.5	6.5	1.5	6.8	ns	
tPLH(3)	PropagationDelay Bx to PERA, PBx to $\overline{\text { PERA }}$			1.5	9	1.5	9	1.5	7.5	1.5	7.8	ns	
tPHL				1.5	8	1.5	8	1.5	6.5	1.5	6.8	ns	
tPLH tPHL	Propagation Delay LEBA to Ax and LEAB to Bx and			1.5	5.6	1.5	6	1.5	5.3	1.5	5.5	ns	
tPLH(3)	Propagation Delay LEBA to PERA, LEAB to PERB			1.5	7	1.5	7	1.5	6	1.5	6.3	ns	
tPHL				1.5	6	1.5	6	1.5	5	1.5	5.3	ns	
tPLH tPHL	Propagation Delay CLKBA to Ax and CLKAB to Bx and			1.5	5.6	1.5	6	1.5	5.3	1.5	5.5	ns	
tPLH ${ }^{(3)}$	Propagation Delay CLKBA to PERA CLKAB to $\overline{\text { PERB }}$			1.5	7	1.5	7	1.5	6	1.5	6.3	ns	
tPHL				1.5	6	1.5	6	1.5	5	1.5	5.3	ns	
$\begin{aligned} & \text { tPZH } \\ & \text { tPZL } \end{aligned}$	OutputEnable Time $\overline{O E B A}$ to $A x$ and PAx $\overline{O E A B}$ to Bx and PBx			1.5	6	1.5	6.5	1.5	5.6	1.5	5.8	ns	
$\begin{aligned} & \text { tPHZ } \\ & \text { tPLZ } \end{aligned}$	OutputDisable Time $\overline{O E B A}$ to $A x$ and PAx $\overline{O E A B}$ to $B x$ and $P B x$			1.5	5.6	1.5	6	1.5	5.2	1.5	5.5	ns	
tPLZ ${ }^{(3)}$	Parity ERROR Enable $\overline{\text { OEBA }}$ to $\overline{\text { PERA, }} \overline{\text { OEAB }}$ to $\overline{\text { PERB }}$			1.5	6	1.5	6.3	1.5	6	1.5	6.3	ns	
tPZL				1.5	6	1.5	6.3	1.5	6	1.5	6.3	ns	
tPLH ${ }^{(3)}$	ODD/EVEN to $\overline{\text { PERx }}$			1.5	10	1.5	10	1.5	10	1.5	10	ns	
tPHL				1.5	10	1.5	10	1.5	10	1.5	10	ns	
$\begin{aligned} & \text { tPLH } \\ & \text { tPHL } \end{aligned}$	ODD/EVEN to PBx			1.5	10	1.5	10	1.5	10	1.5	10	ns	

NOTES:

1. See test circuits and waveforms.
2. Minimum limits are guaranteed but not tested on Propagation Delays.
3. On Open Drain Outputs tplh is measured at Vout $=$ Vol +0.3 V .

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (SET UP TIMES)

Symbol	Parameter				FCT162511AT				FCT162511CT				Unit
					Ind.		Mil.		Ind.		Mil.		
		Test Conditions ${ }^{(1,3)}$			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
tsu	Set-up Time HIGH or LOW Ax to CLKAB	GEN/CHK LOW	PBx valid	$\mathrm{CL}=50 \mathrm{pF}$	4	-	4	-	3	-	3.5	-	ns
			PBx not valid	$\mathrm{RL}=500 \Omega$	3	-	3	-	3	-	3	-	ns
		$\overline{\mathrm{GEN}} / \mathrm{CHK} \mathrm{HIGH}$	$\overline{\text { PERB }}$ valid		4	-	4	-	3	-	3	-	ns
			$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
tsu	Set-up Time PAx to CLKAB	$\overline{\mathrm{GEN}} / \mathrm{CHK} \mathrm{HIGH}$	$\overline{\text { PERB }}$ valid		4	-	4	-	3	-	3	-	ns
			$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
tsu	Set-up Time Bx to CLKBA, PBx to CLKBA		$\overline{\text { PERA }}$ valid		4	-	4	-	3	-	3	-	ns
			$\overline{\text { PERA }}$ not valid		3	-	4	-	3	-	3	-	ns
tsu	Set-up Time Ax to LEAB	CLKAB LOW	PBx valid		3.5	-	3.5	-	3	-	3	-	ns
		$\overline{\mathrm{GEN}} / \mathrm{CHK}$ LOW	PBx not valid		3	-	3	-	3	-	3	-	ns
		CLKAB LOW	$\overline{\text { PERB }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
		GEN/CHK HIGH	$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
		CLKAB HIGH	PBx valid		3.5	-	3.5	-	3	-	3	-	ns
		GEN/CHK LOW	PBx not valid		3	-	3	-	3	-	3	-	ns
		CLKAB HIGH	$\overline{\text { PERB }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
		$\overline{G E N} / \mathrm{CHK} \mathrm{HIGH}$	$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
tsu	Set-upTime PAx to LEAB	CLKAB LOW	$\overline{\text { PERB }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
		GEN/CHK HIGH	$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
		CLKAB HIGH	$\overline{\text { PERB }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
		$\overline{\mathrm{GEN}} / \mathrm{CHK} \mathrm{HIGH}$	$\overline{\text { PERB }}$ not valid		3	-	3	-	3	-	3	-	ns
tSU	Set-up Time Bx to LEBA PBx to LEBA	CLKBA LOW	$\overline{\text { PERA }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
			$\overline{\text { PERA }}$ not valid		3	-	3	-	3	-	3	二	ns
		CLKBA HIGH	$\overline{\text { PERA }}$ valid		3.5	-	3.5	-	3	-	3	-	ns
			$\overline{\text { PERA }}$ not valid		3	-	3	二	3	-	3	-	ns
tSk(0)	OutputSkew ${ }^{(4)}$				-	0.5	-	0.5	-	0.5	-	0.5	ns

SWITCHING CHARACTERISTICS OVER OPERATING RANGE (HOLD TIMES)

Symbol	Parameter	Condition ${ }^{(1)}$	FCT162511AT				FCT162511CT				Unit
			Ind.		Mil.		Ind.		Mil.		
			Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	
H	Hold Time HIGH or LOW Ax to LEAB, Bx to LEBA	$\mathrm{CL}=50 \mathrm{pF}$	1	-	1	-	1	-	1	-	ns
H	Hold Time HIGH or LOW PAx to LEAB	$\mathrm{RL}=500 \Omega$	1	-	1	-	1	-	1	-	ns
H	Hold Time HIGH or LOW PBx to LEBA		1	-	1	-	1	-	1	-	ns
H	Hold Time Ax to CLKAB, PAx to CLKAB		1	-	1	-	0	-	0	-	ns
H	Hold Time Bx to CLKBA, PBx to CLKBA		1	-	1	-	0	-	0	-	ns
tw	LEAB or LEBA Pulse Width HIGH ${ }^{(2)}$		3	-	3	-	3	-	3	-	ns
tw	CLKAB or CLKBA Pulse Width HIGH or LOW ${ }^{(2)}$		3	-	3	-	3	-	3	-	ns

NOTES:

1. See test circuits and waveforms.
2. This parameter is guaranteed but not tested.
3. "Not valid" means the set-up time indicated is not sufficient to assure proper functioning of this output; however, the set-up time indicated will assure proper functioning of the A to B or B to A port respective to the indicated direction.
4. Skew between any two outputs of the same package, switching in the same direction, excluding $\overline{\text { PERx }}$ in clocked mode, and Pxx (parity bits) and $\overline{\mathrm{PERx}}$ in transparent/ latched mode. This parameter is guaranteed by design.

TEST CIRCUITS AND WAVEFORMS

Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay

SWITCH POSITION

Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

DEFINITIONS:

$\mathrm{CL}=$ Load capacitance: includes jig and probe capacitance.
RT = Termination resistance: should be equal to Zout of the Pulse Generator.

Pulse Width

Enable and Disable Times

NOTES:

1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
2. Pulse Generator for All Pulses: Rate $\leq 1.0 \mathrm{MHz}$; $\mathrm{tF} \leq 2.5 \mathrm{~ns}$; $\mathrm{tR} \leq 2.5 \mathrm{~ns}$.

ORDERING INFORMATION

Datasheet Document History

09/06/09 Pg. $6 \quad$ Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS
6024 Silver Creek Valley Road
San Jose, CA 95138
for SALES:
800-345-7015 or 408-284-8200
fax: 408-284-2775
www.idt.com
for Tech Support:
logichelp@idt.com

