imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

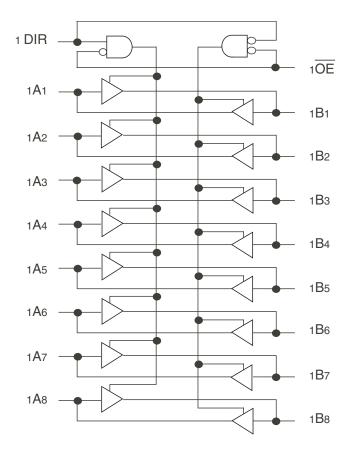
Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

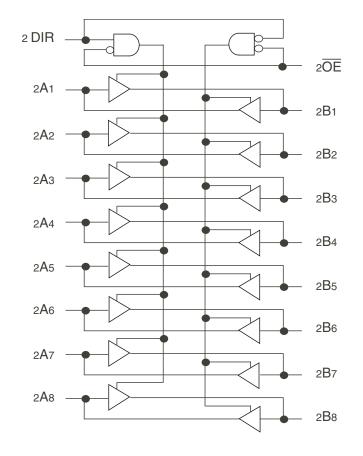
() IDT.

FAST CMOS 16-BIT BIDIRECTIONAL TRANSCEIVER

IDT74FCT162H245AT/CT

FEATURES:

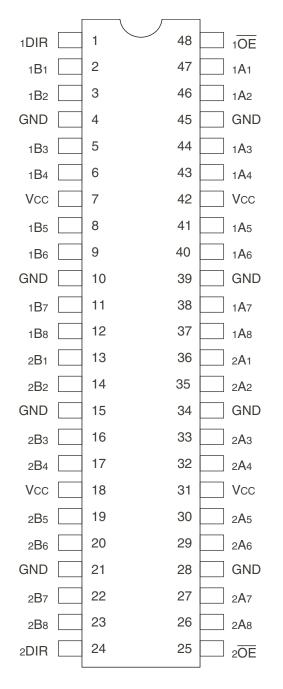

- 0.5 MICRON CMOS Technology
- · High-speed, low-power CMOS replacement for ABT functions
- Typical tSK(o) (Output Skew) < 250ps
- Low input and output leakage ≤ 1µA (max.)
- ESD > 2000V per MIL-STD-883, Method 3015; > 200V using machine model (C = 200pF, R = 0)
- · Bus Hold retains last active bus state during 3-state
- · Eliminates the need for external pull up resistors
- Available in SSOP and TSSOP packages


DESCRIPTION:

The FCT162H245T 16-bit transceiver is built using advanced dual metal CMOS technology. These high-speed, low-power transceivers are ideal for synchronous communication between two busses (A and B). The Direction and Output Enable controls operate these devices as either two independent 8-bit transceivers or one 16-bit transceiver. The direction control pin (xDIR) controls the direction of data flow. The output enable pin (\overline{xOE}) overrides the direction control and disables both ports. All inputs are designed with hysteresis for improved noise margin.

The FCT162H245T has "Bus Hold" which retains the input's last state whenever the input goes to high impedance. This prevents "floating" inputs and eliminates the need for pull-up/down resistors.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.
INDUSTRIAL TEMPERATURE RANGE

1

SEPTEMBER 2009

PIN CONFIGURATION

SSOP/ TSSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
Tstg	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All device terminals except FCT162XXXT and FCT166XXT (A-Port) Output and I/O terminals.

3. Output and I/O terminals for FCT162XXXT and FCT166XXXT (A-Port).

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	pF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names Description		
xŌĒ	x OE Outputs Enable Input (Active LOW)	
xDIR	Direction Control Inputs	
x A x Side A Inputs or 3-State Outputs ⁽¹⁾		
xBx	Side B Inputs or 3-State Outputs ⁽¹⁾	

NOTE:

1. These pins have "Bus-hold". All other pins are standard inputs, outputs, or I/Os.

FUNCTION TABLE⁽¹⁾

Inputs		
xOE	xDIR	Output
L	L	Bus B Data to Bus A
L	Н	Bus A Data to Bus B
Н	Х	High Z State

NOTE:

1. H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

Z = High-Impedance

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter			Test Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
VIH	Input HIGH Level		Guaranteed Logic H	HGHLevel	2	_	_	V
VIL	Input LOW Level	_	Guaranteed Logic L	OW Level		—	0.8	V
Ін	Input	Standard Input ⁽⁵⁾	Vcc = Max.	VI = VCC	_	—	±1	μA
	HIGH	Standard I/O ⁽⁵⁾]		—	—	±1	
	Current ⁽⁴⁾	Bus-hold Input			—	—	±100	
		Bus-hold I/O]		—	_	±100	
lı∟	Input	Standard Input ⁽⁵⁾		VI = GND		—	±1	
	LOW	Standard I/O ⁽⁵⁾]		—	_	±1	
	Current ⁽⁴⁾	Bus-hold Input]		_	_	±100	
		Bus-hold I/O]		—	_	±100	
Івнн	Bus-hold Sustain	Bus-hold Input	Vcc = Min.	VI = 2V	-50	_	_	μA
IBHL	Current ⁽⁴⁾			VI = 0.8V	50	_	_	
Іоzн	High Impedance O	utput Current	Vcc = Max.	Vo = 2.7V	_	_	±1	μA
Iozl	(3-State Output pin	s) ^(5,6)		Vo = 0.5V		_	±1	
Vik	Clamp Diode Volta	ge	Vcc = Min., IIN = -1	18mA		-0.7	-1.2	V
los	Short Circuit Current		Vcc = Max., Vo =	GND ⁽³⁾	-80	-140	-250	mA
Vн	Input Hysteresis			_	—	100	_	mV
ICCL	Quiescent Power Supply Current		Vcc = Max.			5	500	μA
Іссн			VIN = GND or VCC					
lccz								

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Condition	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
IODL	Output LOW Current	VCC = 5V, VIN = VIH or VIL, $VO = 1.5$	VCC = 5V, VIN = VIH or VIL, VO = $1.5V^{(3)}$		115	200	mA
IODH	Output HIGH Current	Vcc = 5V, VIN = VIH or VIL, Vo = 1.5	$VCC = 5V$, $VIN = VIH$ or VIL , $VO = 1.5V^{(3)}$		-115	-200	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = -24mA	2.4	3.3	—	V
		VIN = VIH or VIL					
Vol	Output LOW Voltage	Vcc = Min.	IOH = 24mA	—	0.3	0.55	V
		VIN = VIH or VIL					

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. Pins with Bus-hold are identified in the pin description.

5. The test limit for this parameter is \pm 5µA at TA = -55°C.

6. Does not include Bus-hold I/O pins.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{array}{l} Vcc = Max. \\ ViN = 3.4V^{(3)} \end{array}$		—	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max. Outputs Open xOE = xDIR = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	60	100	μΑ/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max. Outputs Open fi = 10MHz	VIN = VCC VIN = GND	—	0.6	1.5	mA
		50% Duty Cycle xOE = xDIR = GND One Bit Toggling	VIN = 3.4V VIN = GND	—	0.9	2.3	
		Vcc = Max. Outputs Open fi = 2.5MHz	VIN = VCC VIN = GND	—	2.4	4.5(5)	
		50% Duty Cycle xOE = xDIR = GND Sixteen Bits Toggling	VIN = 3.4V VIN = GND	_	6.4	16.5 ⁽⁵⁾	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

- 5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCPNCP/2 + fiNi)$

Icc = Quiescent Current (IccL, IccH and Iccz)

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

 $N \tau$ = Number of TTL Inputs at $D {\mbox{\tiny H}}$

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)

NCP = Number of Clock Inputs at fCP

fi = Input Frequency

Ni = Number of Inputs at fi

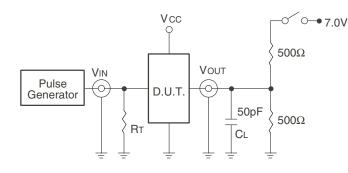
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			FCT162	H245AT	FCT162	H245CT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH tPHL	Propagation Delay A to B, B to A	CL = 50pF RL = 500Ω	1.5	4.6	1.5	3.5	ns
tPZH tPZL	Output Enable Time xOE to A or B		1.5	6.2	1.5	4.4	ns
tPHZ tPLZ	Output Disable Time xOE to A or B		1.5	5	1.5	4	ns
tPZH tPZL	Output Enable Time xDIR to A or B ⁽³⁾		1.5	6.2	1.5	4.8	ns
tPHZ tPLZ	Output Disable Time xDIR to A or $B^{(3)}$		1.5	5	1.5	4	ns
tSK(o)	Output Skew ⁽⁴⁾		—	0.5	—	0.5	ns

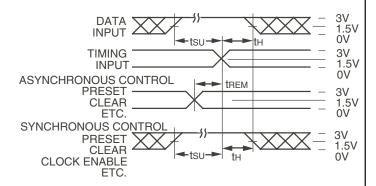
NOTES:

1. See test circuit and waveforms.

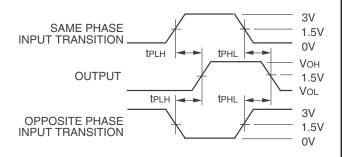
2. Minimum limits are guaranteed but not tested on Propagation Delays.


3. This parameter is guaranteed but not tested.

4. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.


IDT74FCT162H245AT/CT FASTCMOS16-BIT BIDIRECTIONAL TRANSCEIVER

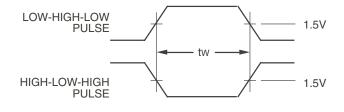
INDUSTRIAL TEMPERATURE RANGE


TEST CIRCUITS AND WAVEFORMS

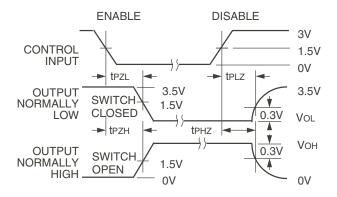
Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay


SWITCH POSITION

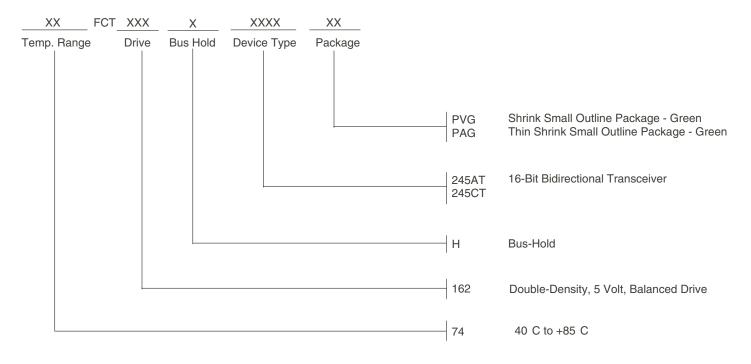
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open


DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width



Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

Datasheet Document History

09/10/09 Pg.6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com