

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!



# Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China





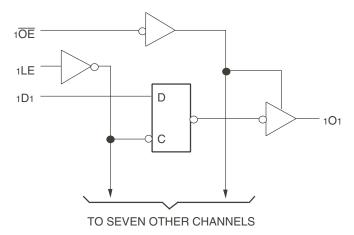


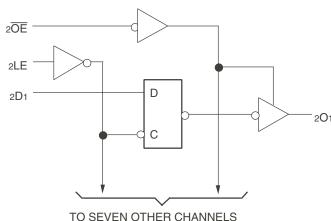


## FAST CMOS 16-BIT TRANSPARENT LATCH

## IDT74FCT16373AT/CT

## **FEATURES:**


- 0.5 MICRON CMOS Technology
- . High-speed, low-power CMOS replacement for ABT functions
- Typical tsk(o) (Output Skew) < 250ps</li>
- Low input and output leakage ≤1µA (max.)
- Vcc = 5V ±10%
- High drive outputs (-32mA IOH, 64mA IOL)
- Power off disable outputs permit "live insertion"
- Typical Volp (Output Ground Bounce) < 1.0V at Vcc = 5V, TA = 25°C
- Available in SSOP and TSSOP packages

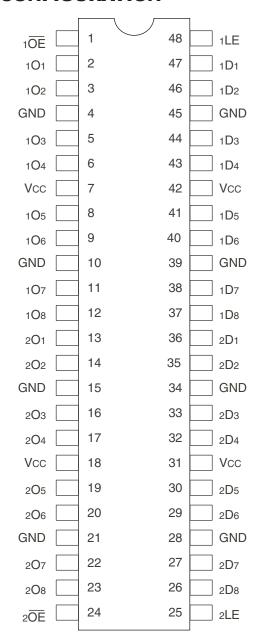

#### **DESCRIPTION:**

The FCT16373T 16-bit transparent D-type latch is built using advanced dual metal CMOS technology. These high-speed, low-power latches are ideal for temporary storage of data. They can be used for implementing memory address latches, I/O ports, and bus drivers. The Output Enable and Latch Enable controls are organized to operate each device as two 8-bit latches, or one 16-bit latch. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT16373T is ideally suited for driving high-capacitance loads and low-impedance backplanes. The output buffers are designed with power off disable capability to allow "live insertion" of boards when used as backplane drivers.

### **FUNCTIONAL BLOCK DIAGRAM**






The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2009

### PIN CONFIGURATION



SSOP/ TSSOP TOP VIEW

## **ABSOLUTE MAXIMUM RATINGS**(1)

| Symbol               | Description                                    | Max             | Unit |
|----------------------|------------------------------------------------|-----------------|------|
| VTERM <sup>(2)</sup> | Terminal Voltage with Respect to GND -0.5 to 7 |                 | ٧    |
| VTERM <sup>(3)</sup> | Terminal Voltage with Respect to GND           | -0.5 to Vcc+0.5 | ٧    |
| Tstg                 | Storage Temperature                            | -65 to +150     | °C   |
| Іоит                 | DC Output Current                              | -60 to +120     | mA   |

#### NOTES:

- 1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.
- 2. All device terminals except FCT162XXX Output and I/O terminals.
- 3. Outputs and I/O terminals for FCT162XXX.

## **CAPACITANCE** (TA = +25°C, f = 1.0MHz)

| Symbol | Parameter <sup>(1)</sup> | Conditions | Тур. | Max. | Unit |
|--------|--------------------------|------------|------|------|------|
| CIN    | Input Capacitance        | VIN = 0V   | 3.5  | 6    | рF   |
| Соит   | Output Capacitance       | Vout = 0V  | 3.5  | 8    | pF   |

#### NOTE:

1. This parameter is measured at characterization but not tested.

### **PIN DESCRIPTION**

| Pin Names | Description                      |  |
|-----------|----------------------------------|--|
| xDx       | Data Inputs                      |  |
| xLE       | Latch Enable Input (Active HIGH) |  |
| xŌĒ       | Output Enable Input (Active LOW) |  |
| хОх       | 3-State Outputs                  |  |

## **FUNCTION TABLE(1)**

|     | Outputs |     |     |
|-----|---------|-----|-----|
| хDх | xLE     | xŌĒ | хОх |
| Н   | Н       | L   | Н   |
| L   | Н       | L   | L   |
| Х   | Х       | Н   | Z   |

#### NOTE:

1. H = HIGH voltage level

L = LOW voltage level

X = Don't care

Z = High-impedance

## DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

 $Following\ Conditions\ Apply\ Unless\ Otherwise\ Specified:$ 

Industrial: TA = -40°C to +85°C, VCC = 5.0V  $\pm 10$ %

| Symbol | Parameter                            | Test Conditions                     | <sub>S</sub> (1) | Min. | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|--------------------------------------|-------------------------------------|------------------|------|---------------------|------|------|
| VIH    | Input HIGH Level                     | Guaranteed Logic HIGH Level         |                  | 2    | _                   | -    | V    |
| VIL    | Input LOW Level                      | Guaranteed Logic LOW Level          |                  | _    | _                   | 0.8  | V    |
| Iн     | Input HIGH Current (Input pins)(5)   | Vcc = Max.                          | VI = VCC         | _    | _                   | ±1   | μA   |
|        | Input HIGH Current (I/O pins)(5)     | 1                                   |                  | _    | _                   | ±1   |      |
| lıL    | Input LOW Current (Input pins)(5)    | 1                                   | Vı = GND         | T -  | _                   | ±1   |      |
|        | Input LOW Current (I/O pins)(5)      | 1                                   |                  | _    | _                   | ±1   |      |
| lozh   | High Impedance Output Current        | Vcc = Max.                          | Vo = 2.7V        | T -  | _                   | ±1   | μА   |
| lozL   | (3-State Output pins) <sup>(5)</sup> |                                     | Vo = 0.5V        | -    | _                   | ±1   |      |
| VIK    | Clamp Diode Voltage                  | Vcc = Min., IIN = -18mA             |                  | T -  | -0.7                | -1.2 | V    |
| los    | Short Circuit Current                | Vcc = Max., Vo = GND <sup>(3)</sup> |                  | -80  | -140                | -250 | mA   |
| VH     | Input Hysteresis                     | _                                   |                  | T -  | 100                 | _    | mV   |
| ICCL   | Quiescent Power Supply Current       | Vcc = Max                           |                  | T -  | 5                   | 500  | μA   |
| ICCH   |                                      | VIN = GND or Vcc                    |                  |      |                     |      |      |
| Iccz   |                                      |                                     |                  |      |                     |      |      |

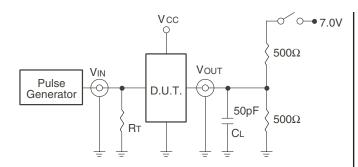
### **OUTPUT DRIVE CHARACTERISTICS**

| Symbol | Parameter                                     | Test Conditions <sup>(1)</sup>      |                                     | Min.            | Typ. <sup>(2)</sup> | Max. | Unit |
|--------|-----------------------------------------------|-------------------------------------|-------------------------------------|-----------------|---------------------|------|------|
| lo     | Output Drive Current                          | $Vcc = Max., Vo = 2.5V^{(3)}$       |                                     | <del>-</del> 50 | _                   | 180  | mA   |
| Vон    | Output HIGH Voltage                           | Vcc = Min.                          | Iон = –3mA                          | 2.5             | 3.5                 | ı    | V    |
|        |                                               | VIN = VIH or VIL                    | Iон = -15mA                         | 2.4             | 3.5                 | ı    | V    |
|        |                                               |                                     | IOH = -32mA <sup>(4)</sup>          | 2               | 3                   | ı    | V    |
| Vol    | Output LOW Voltage                            | Vcc = Min.                          | IoL = 64mA                          | _               | 0.2                 | 0.55 | V    |
|        |                                               | VIN = VIH or VIL                    |                                     |                 |                     |      |      |
| IOFF   | Input/Output Power Off Leakage <sup>(5)</sup> | $VCC = 0V$ , $VIN = or Vo \le 4.5V$ | $VCC = 0V$ , $VIN = or VO \le 4.5V$ |                 | _                   | ±1   | μА   |

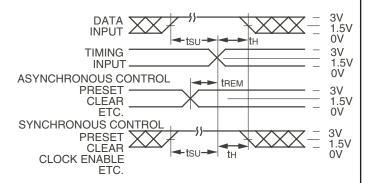
- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.
- 4. Duration of the condition can not exceed one second.
- 5. This test limit for this parameter is  $\pm 5\mu A$  at  $T_A = -55^{\circ} C$ .

### POWER SUPPLY CHARACTERISTICS

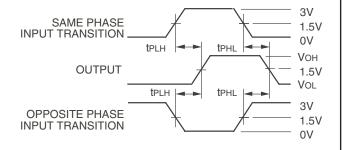
| Symbol | Parameter                                      | Test Conditions <sup>(1)</sup>                                        |                                                   | Min. | Typ. <sup>(2)</sup> | Max.                | Unit       |
|--------|------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------|------|---------------------|---------------------|------------|
| Δlcc   | Quiescent Power Supply Current TTL Inputs HIGH | Vcc = Max.<br>$Vin = 3.4V^{(3)}$                                      |                                                   | _    | 0.5                 | 1.5                 | mA         |
| ICCD   | Dynamic Power Supply Current <sup>(4)</sup>    | Vcc = Max. Outputs Open xOE = GND One Input Toggling 50% Duty Cycle   | VIN = VCC<br>VIN = GND                            | _    | 60                  | 100                 | μΑ/<br>MHz |
| Ic     | Total Power Supply Current <sup>(6)</sup>      | Vcc = Max. Outputs Open fi = 10MHz 50% Duty Cycle xOE = GND xLE = Vcc | VIN = VCC<br>VIN = GND<br>VIN = 3.4V<br>VIN = GND | _    | 0.6                 | 2.3                 | mA         |
|        |                                                | One Bit Toggling  Vcc = Max. Outputs Open                             | VIN = VCC<br>VIN = GND                            | _    | 2.4                 | 4.5 <sup>(5)</sup>  |            |
|        |                                                | fi = 2.5MHz 50% Duty Cycle xOE = GND xLE = Vcc Sixteen Bits Toggling  | VIN = 3.4V<br>VIN = GND                           | _    | 6.4                 | 16.5 <sup>(5)</sup> |            |


- 1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.
- 2. Typical values are at Vcc = 5.0V, +25°C ambient.
- 3. Per TTL driven input (VIN = 3.4V). All other inputs at Vcc or GND.
- 4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.
- 5. Values for these conditions are examples of the lcc formula. These limits are guaranteed but not tested.
- 6. IC = IQUIESCENT + INPUTS + IDYNAMIC
  - $IC = ICC + \Delta ICC DHNT + ICCD (fcpNcp/2 + fiNi)$
  - Icc = Quiescent Current (IccL, Iccн and Iccz)
  - $\Delta lcc$  = Power Supply Current for a TTL High Input (VIN = 3.4V)
  - DH = Duty Cycle for TTL Inputs High
  - NT = Number of TTL Inputs at DH
  - ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)
  - fcp = Clock Frequency for Register Devices (Zero for Non-Register Devices)
  - NCP = Number of Clock Inputs at fCP
  - fi = Input Frequency
  - Ni = Number of Inputs at fi

## SWITCHING CHARACTERISTICS OVER OPERATING RANGE


|        |                                     |                          | FCT16               | 373AT | FCT16               | 6373CT |      |
|--------|-------------------------------------|--------------------------|---------------------|-------|---------------------|--------|------|
| Symbol | Parameter                           | Condition <sup>(2)</sup> | Min. <sup>(2)</sup> | Max.  | Min. <sup>(2)</sup> | Max.   | Unit |
| tplh   | Propagation Delay                   | CL = 50pF                | 1.5                 | 5.2   | 1.5                 | 3.6    | ns   |
| tPHL   | xDx to xOx                          | $RL = 500\Omega$         |                     |       |                     |        |      |
| tplh   | Propagation Delay                   |                          | 2                   | 8.5   | 2                   | 3.7    | ns   |
| tPHL   | xLE to xOx                          |                          |                     |       |                     |        |      |
| tpzh   | Output Enable Time                  |                          | 1.5                 | 6.5   | 1.5                 | 4.4    | ns   |
| tpzl   |                                     |                          |                     |       |                     |        |      |
| tPHZ   | Output Disable Time                 |                          | 1.5                 | 5.5   | 1.5                 | 3.9    | ns   |
| tPLZ   |                                     |                          |                     |       |                     |        |      |
| tsu    | Set-up Time HIGH or LOW, xDx to xLE |                          | 2                   | _     | 2                   | _      | ns   |
| 1H     | Hold Time HIGH or LOW, xDx to xLE   |                          | 1.5                 | _     | 1.5                 | _      | ns   |
| tw     | xLE Pulse Width HIGH                |                          | 5                   | _     | 5                   | _      | ns   |
| tsk(o) | Output Skew <sup>(3)</sup>          |                          | _                   | 0.5   | _                   | 0.5    | ns   |

- 1. See test circuit and waveforms.
- 2. Minimum limits are guaranteed but not tested on Propagation Delays.
- 3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.


### **TEST CIRCUITS AND WAVEFORMS**



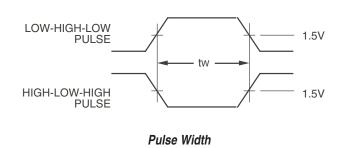
Test Circuits for All Outputs

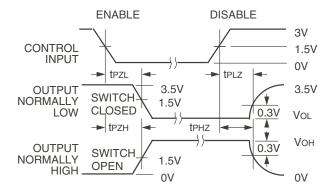


Set-up, Hold, and Release Times



**Propagation Delay** 

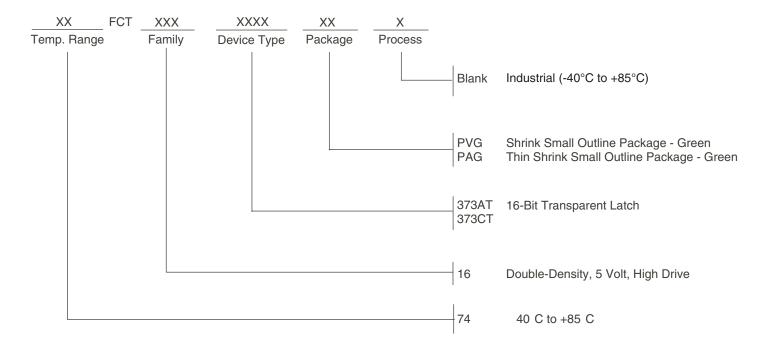

#### **SWITCH POSITION**


| Test                                    | Switch |
|-----------------------------------------|--------|
| Open Drain<br>Disable Low<br>Enable Low | Closed |
| All Other Tests                         | Open   |

#### **DEFINITIONS:**

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZouT of the Pulse Generator.






**Enable and Disable Times** 

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate  $\leq$  1.0MHz; tF  $\leq$  2.5ns; tR  $\leq$  2.5ns.

### ORDERING INFORMATION



## **Datasheet Document History**

09/10/09 Pg.7 Updated the ordering information by removing the "IDT" notation and non RoHS part.



#### **CORPORATE HEADQUARTERS**

6024 Silver Creek Valley Road San Jose, CA 95138

#### for SALES:

800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com

for Tech Support: logichelp@idt.com