imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

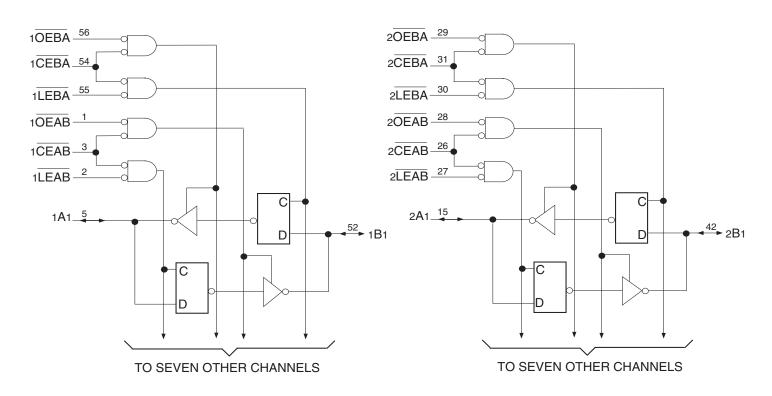
Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAST CMOS 16-BIT LATCHED TRANSCEIVER

IDT74FCT16543AT/CT/ET

FEATURES:

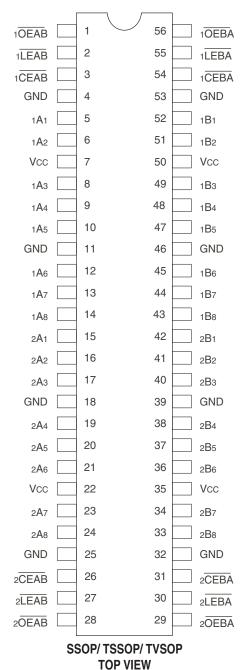

- 0.5 MICRON CMOS Technology
- · High-speed, low-power CMOS replacement for ABT functions
- Typical tSK(o) (Output Skew) < 250ps
- Low input and output leakage ≤1µA (max.)
- Vcc = 5V ±10%
- High drive outputs (-32mA IOH, 64mA IOL)
- Power off disable outputs permit "live insertion"
- Typical VolP (Output Ground Bounce) < 1.0V at Vcc = 5V, TA = 25° C
- Available in SSOP, TSSOP, and TVSOP packages

DESCRIPTION:

The FCT16543T 16-bit latched transceivers are built using advanced dual metal CMOS technology. These high-speed, low-power devices are organized as two independent 8-bit D-type latched transceivers with separate input and output control to permit independent control of data flow in either direction. For example, the A-to-B Enable (xCEAB) must be low in order to enter data from the A port or to output data from the B port. xLEAB controls the latch function. When xLEAB is low, the latches are transparent. A subsequent low-to-high transition of xLEAB signal puts the A latches in the storage mode. xOEAB performs output enable function on the B port. Data flow from the B port to the A port is similar but requires using xCEBA, xLEBA, and xOEBA inputs. Flow-through organization of signal pins simplifies layout. All inputs are designed with hysteresis for improved noise margin.

The FCT16543T is ideally suited for driving high-capacitance loads and low-impedance backplanes. The output buffers are designed with power off disable capability to allow "live insertion" of boards when used as backplane drivers.

FUNCTIONAL BLOCK DIAGRAM



The IDT logo is a registered trademark of Integrated Device Technology, Inc.

INDUSTRIAL TEMPERATURE RANGE

SEPTEMBER 2009

PIN CONFIGURATION

PIN DESCRIPTION

Description
A-to-B Output Enable Input (Active LOW)
B-to-A Output Enable Input (Active LOW)
A-to-B Enable Input (Active LOW)
B-to-A Enable Input (Active LOW)
A-to-B Latch Enable Input (Active LOW)
B-to-A Latch Enable Input (Active LOW)
A-to-B Data Inputs or B-to-A 3-State Outputs
B-to-A Data Inputs or A-to-B 3-State Outputs

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to 7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability.

2. All device terminals except FCT162XXX Output and I/O terminals.

3. Outputs and I/O terminals for FCT162XXX.

CAPACITANCE (TA = +25°C, f = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	3.5	6	рF
Соит	Output Capacitance	Vout = 0V	3.5	8	pF

NOTE:

1. This parameter is measured at characterization but not tested.

FUNCTION TABLE^(1,2)

For A-to-B (Symmetric with B-to-A)

	Inputs		Latch Status	Output Buffers
xCEAB	xTEAB	xOEAB	xAx to xBx	xBx
Н	Х	Х	Storing	Z
Х	Н	Х	Storing	Х
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous* A Inputs
L	L	Н	Transparent	Z
L	Н	Н	Storing	Z

NOTES:

1. * Before xLEAB LOW-to-HIGH Transition

H = HIGH Voltage Level

L = LOW Voltage Level

X = Don't Care

 A-to-B data flow shown; B-to-A flow control is the same, except using xCEBA, xLEBA and xOEBA.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified: Industrial: TA = -40° C to $+85^{\circ}$ C, Vcc = $5.0V \pm 10\%$

Symbol	Parameter	Test Conditio	ns ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH Level		2	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		—	—	0.8	V
Ін	Input HIGH Current (Input pins) ⁽⁵⁾	Vcc = Max.	VI = VCC	—	—	±1	μA
	Input HIGH Current (I/O pins) ⁽⁵⁾			-	_	±1	
lıL	Input LOW Current (Input pins) ⁽⁵⁾]	VI = GND	_	—	±1	
	Input LOW Current (I/O pins) ⁽⁵⁾]		_	_	±1	
lozн	High Impedance Output Current	Vcc = Max.	Vo = 2.7V	_	—	±1	μA
lozl	(3-State Output pins) ⁽⁵⁾		Vo = 0.5V	—	—	±1	
Vik	Clamp Diode Voltage	Vcc = Min., IIN = -18mA		-	-0.7	-1.2	V
los	Short Circuit Current	$Vcc = Max., Vo = GND^{(3)}$		-80	-140	250	mA
Vн	Input Hysteresis	_		—	100	—	mV
ICCL	Quiescent Power Supply Current	Vcc = Max		-	5	500	μA
Іссн		VIN = GND or Vcc					
lccz							

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾			Typ. ⁽²⁾	Max.	Unit
lo	Output Drive Current	Vcc = Max., Vo = 2.5V ⁽³⁾		50	_	-180	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = –3mA	2.5	3.5	_	V
		VIN = VIH or VIL	IOH = –15mA	2.4	3.5	_	V
			IOH = -32mA ⁽⁴⁾	2	3	_	V
Vol	Output LOW Voltage	Vcc = Min.	IOL = 64mA	—	0.2	0.55	V
		VIN = VIH or VIL					
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	VCC = 0V, VIN = or VO ≤ 4.5 V		_	_	±1	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Not more than one output should be shorted at one time. Duration of the test should not exceed one second.

4. Duration of the condition can not exceed one second.

5. This test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	$\begin{array}{l} \text{VCC} = \text{Max.} \\ \text{VIN} = 3.4 \text{V}^{(3)} \end{array}$	-	—	0.5	1.5	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max., Outputs Open xCEAB and xOEAB = GND xCEBA = Vcc One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	60	100	μΑ/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fi = 10MHz 50% Duty Cycle	VIN = VCC VIN = GND	—	0.6	1.5	mA
		xLEAB, xCEAB and xOEAB = GND xCEBA = Vcc One Bit Toggling	VIN = 3.4V VIN = GND	_	0.9	2.3	
		Vcc = Max., Outputs Open fi = 2.5MHz 50% Duty Cycle	VIN = VCC VIN = GND	_	2.4	4.5 ⁽⁵⁾	
		xLEAB, xCEAB and xOEAB = GND xCEBA = Vcc Sixteen Bits Toggling	Vin = 3.4V Vin = GND	—	6.4	16.5 ⁽⁵⁾	

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input ($V_{IN} = 3.4V$). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of the Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCPNCP/2 + fiNi)$

Icc = Quiescent Current (IccL, IccH and Iccz)

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current Caused by an Input Transition Pair (HLH or LHL)

fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)

NCP = Number of Clock Inputs at fCP

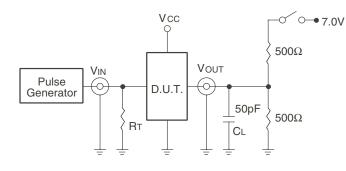
fi = Input Frequency

Ni = Number of Inputs at fi

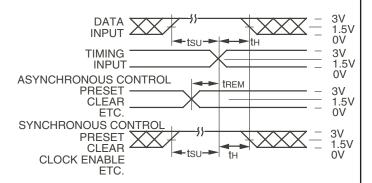
SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT16543AT		74FCT1	6543CT	74FCT1	6543ET	
Symbol	Parameter	Condition ⁽²⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	6.5	1.5	5.1	1.5	3.4	ns
tPHL	Transparent Mode	$RL = 500\Omega$							
	xAx to xBx or xBx to xAx								
t PLH	Propagation Delay		1.5	8	1.5	5.6	1.5	3.7	ns
tPHL	xTEBA to xAx, xTEAB to xBx								
tPHZ	Output Enable Time		1.5	9	1.5	7.8	1.5	4.8	ns
tPLZ	xOEBA or xOEAB to xAx or xBx								
	xCEBA or xCEAB to xAx or xBx								
tPZH	Output Disable Time		1.5	7.5	1.5	6.5	1.5	4	ns
tPZL	xOEBA or xOEAB to xAx or xBx								
	xCEBA or xCEAB to xAx or xBx								
ts∪	Set-up Time HIGH or LOW		2	—	2	—	1	—	ns
	xAx or xBx to $x\overline{LEAB}$ or $x\overline{LEBA}$								
ťH	Hold Time HIGH or LOW		2	—	2	—	1	—	ns
	xAx or xBx to xLEAB or xLEBA								
tw	xLEAB or xLEBA Pulse Width LOW		4	_	4	—	3(4)	_	ns
tSK(o)	Output Skew ⁽³⁾		_	0.5	_	0.5	—	0.5	ns

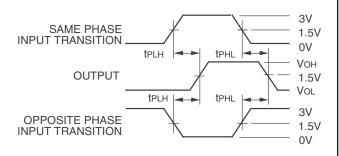
NOTES:


1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.


3. Skew between any two outputs, of the same package, switching in the same direction. This parameter is guaranteed by design.

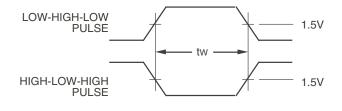
4. This limit is guaranteed but not tested.


TEST CIRCUITS AND WAVEFORMS

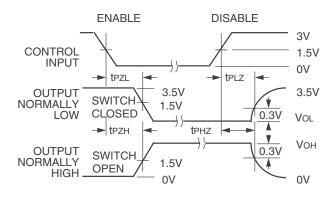
Test Circuits for All Outputs

Set-up, Hold, and Release Times

Propagation Delay


SWITCH POSITION

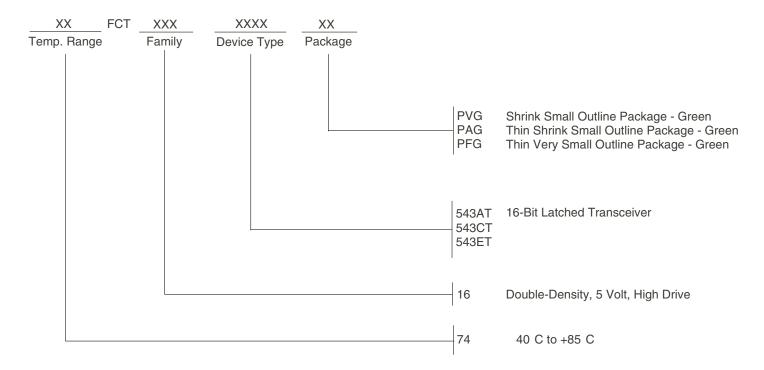
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open


DEFINITIONS:

CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width



Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.

ORDERING INFORMATION

Datasheet Document History

09/28/09 Pg. 7 Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com