imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

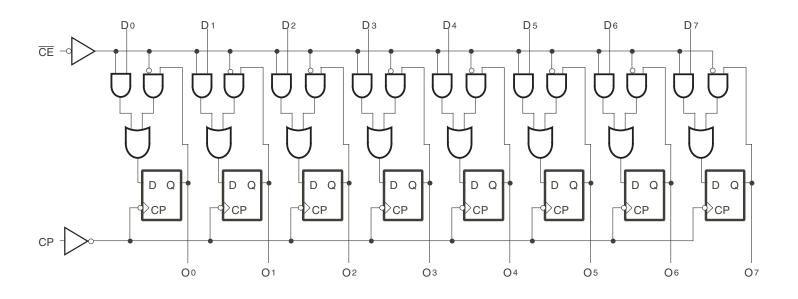
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAST CMOS OCTAL D FLIP-FLOP WITH CLOCK ENABLE

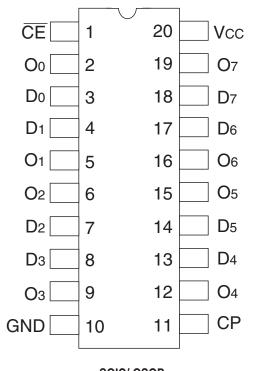
IDT74FCT377AT/CT/DT


FEATURES:

- A, C, and D grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - VOL = 0.3V (typ.)
- High Drive outputs (-15mA IOH, 48mA IOL)
- Meets or exceeds JEDEC standard 18 specifications
- Power off disable outputs permit "live insertion"
- Available in SOIC and QSOP packages

DESCRIPTION:

The IDT74FCT377T is an octal D flip-flop built using an advanced dual metal CMOS technology. The IDT74FCT377T has eight edge-triggered, D-type flip-flops with individual D inputs and O outputs. The common buffered Clock (CP) input loads all flip-flops simultaneously when the Clock Enable (\overline{CE}) is low. The register is fully edge-triggered. The state of each D input, one set-up time before the low-to-high clock transition, is transferred to the corresponding flip-flop's O output. The \overline{CE} input must be stable only one set-up time prior to the low-to-high transition for predictable operation.


FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

OCTOBER 2009

PIN CONFIGURATION

SOIC/ QSOP **TOP VIEW**

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

1. Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.

2. Inputs and Vcc terminals only.

3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	рF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names	Description	
D0 – D7	Data Inputs	
CE	Clock Enable (Active LOW)	
O0 – O7	DataOutputs	
СР	Clock Pulse Input	

FUNCTION TABLE(1)

		Inputs	Outputs	
Operating Mode	СР	Ē	D	0
Load "1"	\uparrow	I	h	Н
Load "0"	\uparrow	I	I	L
Hold	\uparrow	h	Х	No Change
	Н	Н	Х	No Change

NOTE:

1. H = HIGH Voltage Level

h = HIGH Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition

L = LOW Voltage Level I = LOW Voltage Level one setup time prior to the LOW-to-HIGH Clock Transition

X = Don't Care $\uparrow = LOW-to-HIGH Clock Transition$

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial : TA = -40° C to $+85^{\circ}$ C, VCC = $5.0V \pm 5\%$

Symbol	Parameter	Test Con	Test Conditions ⁽¹⁾		Typ. ⁽²⁾	Max.	Unit
Vih	Input HIGH Level	Guaranteed Logic HIGH Level	Guaranteed Logic HIGH Level		—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Level		—	_	0.8	V
Ін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	—	_	±1	μA
lil	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	_	_	±1	μA
li	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Max.)	•	_	_	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min., IN = -18mA	Vcc = Min., IN = -18mA		-0.7	-1.2	V
los	Short Circuit Current	Vcc = Max. ⁽³⁾ , Vo = GND	Vcc = Max. ⁽³⁾ , Vo = GND		-120	-225	mA
Vон	Output HIGH Voltage	Vcc = Min.	IOH = -8mA	2.4	3.3	_	V
		VIN = VIH or VIL	Iон = –12mA	2	3	—	
Vol	Output LOW Voltage	Vcc = Min.	IOL = 48mA	—	0.3	0.5	V
		VIN = VIH or VIL					
IOFF	Input/Output Power Off	Vcc = 0V, VIN or Vo - 4.5V	•	_	_	±1	μA
	Leakage ⁽⁵⁾						
Vн	Input Hysteresis	-	_		200	—	mV
Icc	Quiescent Power	Vcc = Max.	Vcc = Max.		0.01	1	mA
	Supply Current	VIN = GND or VCC	VIN = GND or Vcc				

NOTES:

1. For conditions shown as Max. or Min., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.

3. Not more than one output should be shorted at one time. Duration of the short circuit test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

5. This parameter is guaranted but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Δlcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. VIN = 3.4V ⁽³⁾		-	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max., Outputs Open \overline{CE} = GND One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	—	0.15	0.25	mA/ MHz
lc	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fcP = 10MHz	VIN = VCC VIN = GND	—	1.5	3.5	mA
		\overline{CE} = GNDOne Bit Togglingfi = 5MHz50% Duty Cycle	VIN = 3.4V VIN = GND	—	2	5.5	
		Vcc = Max., Outputs Open fcP = 10MHz, 50% Duty Cycle	VIN = VCC VIN = GND	—	3.8	7.3 ⁽⁵⁾	
		$\overline{CE} = GND$ Eight Bits Toggling fi = 2.5MHz 50% Duty Cycle	VIN = 3.4V VIN = GND	_	6	16.3 ⁽⁵⁾	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

IC = ICC + Δ ICC DHNT + ICCD (fCP/2+ fiNi)

Icc = Quiescent Current

 ΔIcc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)

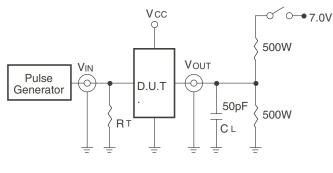
fi = Output Frequency

Ni = Number of Outputs at fi

All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT377AT		74FCT	377CT	74FCT	377DT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	2	7.2	2	5.2	2	4.4	ns
t PHL	CP to Qx	$RL = 500\Omega$							
ts∪	Set-up Time HIGH or LOW		2	-	2	—	2	—	ns
	Dx to CP								
tΗ	Hold Time HIGH or LOW		1.5	—	1.5	—	1	—	ns
	Dx to CP								
ts∪	Set-up Time HIGH or LOW		3.5	—	3.5	—	3	—	ns
	CE to CP								
tΗ	Hold Time HIGH or LOW		1.5	_	1.5	—	0	_	ns
	CE to CP								
tw	CP Pulse Width HIGH or LOW		8	_	6	_	3	_	ns
	I			I	ļ		I		<u> </u>


NOTES:

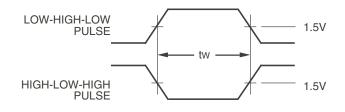
1. See test circuit and waveforms.

2. Minimum limits are guaranteed but not tested on Propagation Delays.

IDT74FCT377AT/CT/DT FAST CMOS OCTAL D FLIP-FLOP WITH CLOCK ENABLE

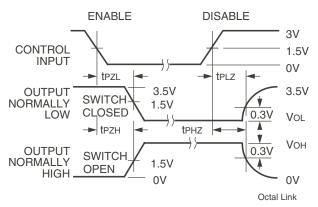
TEST CIRCUITS AND WAVEFORMS

Octal Link



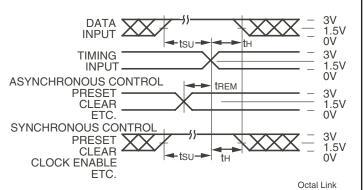
Test	Switch
Open Drain Disable Low Enable Low	Closed
All Other Tests	Open

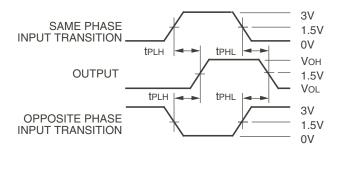
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

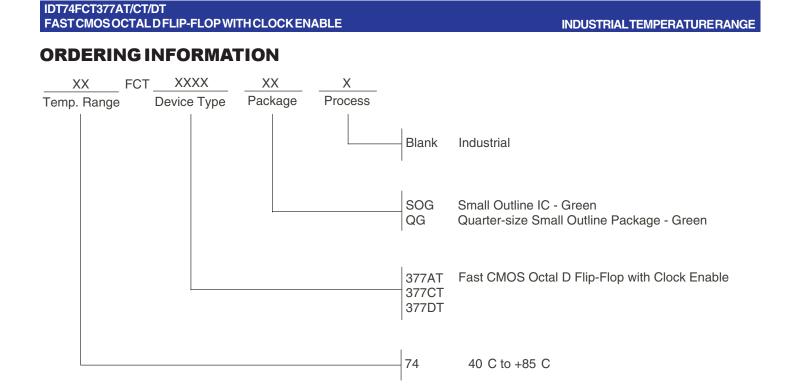
Pulse Width


Octal Link


Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate \leq 1.0MHz; tF \leq 2.5ns; tR \leq 2.5ns.



Set-Up, Hold, and Release Times

Propagation Delay

Octal Link

Datasheet Document History

10/03/09 Pg. 6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com