imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

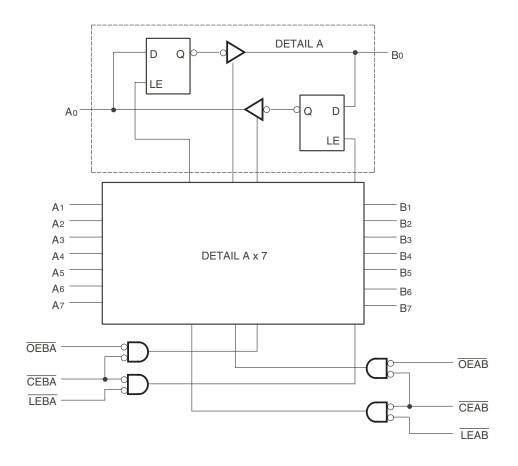
We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

FAST CMOS OCTAL LATCHED TRANSCEIVER

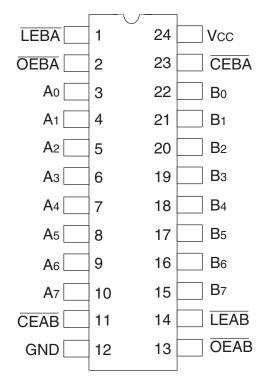
IDT74FCT543AT/CT/DT


FEATURES:

- A, C, and D grades
- Low input and output leakage ≤1µA (max.)
- CMOS power levels
- True TTL input and output compatibility:
 - VOH = 3.3V (typ.)
 - VOL = 0.3V (typ.)
- High Drive outputs (-15mA IOH, 64mA IOL)
- · Meets or exceeds JEDEC standard 18 specifications
- · Power off disable outputs permit "live insertion"
- Available in SOIC and QSOP packages

DESCRIPTION:

The FCT543T is a non-inverting octal transceiver built using an advanced dual metal CMOS technology. This device contains two sets of eight D-type latches with separate input and output controls for each set. For data flow from A to B, for example, the A-to-B Enable (CEAB) input must be low in order to enter data from A0–A7 or to take data from B0–B7, as indicated in the Function Table. With CEAB low, a low signal on the A-to-B Latch Enable (LEAB) input makes the A-to-B latches transparent; a subsequent low-to-high transition of the LEAB signal puts the A latches in the storage mode and their outputs no longer change with the A inputs. With CEAB and OEAB both low, the 3-state B output buffers are active and reflect the data present at the output of the A latches. Control of data from B to A is similar, but uses the CEBA, LEBA and OEAA inputs.


FUNCTIONAL BLOCK DIAGRAM

The IDT logo is a registered trademark of Integrated Device Technology, Inc.

OCTOBER 2009

PIN CONFIGURATION

SOIC/ QSOP TOP VIEW

INDUSTRIAL TEMPERATURE RANGE

ABSOLUTE MAXIMUM RATINGS⁽¹⁾

Symbol	Description	Max	Unit
VTERM ⁽²⁾	Terminal Voltage with Respect to GND	–0.5 to +7	V
VTERM ⁽³⁾	Terminal Voltage with Respect to GND	-0.5 to Vcc+0.5	V
TSTG	Storage Temperature	-65 to +150	°C
Ιουτ	DC Output Current	-60 to +120	mA

NOTES:

 Stresses greater than those listed under ABSOLUTE MAXIMUM RATINGS may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect reliability. No terminal voltage may exceed Vcc by +0.5V unless otherwise noted.

2. Inputs and Vcc terminals only.

3. Output and I/O terminals only.

CAPACITANCE (TA = +25°C, F = 1.0MHz)

Symbol	Parameter ⁽¹⁾	Conditions	Тур.	Max.	Unit
CIN	Input Capacitance	VIN = 0V	6	10	рF
Соит	Output Capacitance	Vout = 0V	8	12	pF

NOTE:

1. This parameter is measured at characterization but not tested.

PIN DESCRIPTION

Pin Names Description			
OEAB A-to-B Output Enable Input (Active LOW)			
OEBA B-to-A Output Enable Input (Active LOW)			
CEAB	A-to-B Enable Input (Active LOW)		
CEBA	B-to-A Enable Input (Active LOW)		
LEAB	A-to-B Latch Enable Input (Active LOW)		
LEBA	B-to-A Latch Enable Input (Active LOW)		
A0–A7	A-to-B Data Inputs or B-to-A 3-State Outputs		
B0-B7	B-to-A Data Inputs or A-to-B 3-State Outputs		

FUNCTION TABLE^(1, 2)

For A-to-B (Symmetric with B-to-A)

	Inputs		Latch Status	Output Buffers
CEAB	LEAB	OEAB	A-to-B	B0B7
Н	Х	Х	Storing	High Z
Х	Н	Х	Storing	Х
Х	Х	Н	Х	High Z
L	L	L	Transparent	Current A Inputs
L	Н	L	Storing	Previous* A Inputs

NOTES:

- 1. * Before LEAB LOW-to-HIGH Transition
 - H = HIGH Voltage Level
 - L = LOW Voltage Level
- X = Don't Care
- A-to-B data flow shown; B-to-A flow control is the same, except using CEBA, LEBA and OEBA.

DC ELECTRICAL CHARACTERISTICS OVER OPERATING RANGE

Following Conditions Apply Unless Otherwise Specified:

Industrial: TA = -40° C to $+85^{\circ}$ C, VCC = $5.0V \pm 5\%$

Symbol	Parameter	Test	Conditions ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Vін	Input HIGH Level	Guaranteed Logic HIGH Lo	evel	2	—	—	V
VIL	Input LOW Level	Guaranteed Logic LOW Le	vel	-	—	0.8	V
Ін	Input HIGH Current ⁽⁴⁾	Vcc = Max.	VI = 2.7V	—	—	±1	μA
lı∟	Input LOW Current ⁽⁴⁾	Vcc = Max.	VI = 0.5V	—	—	±1	μA
Іоzн	High Impedance Output Current	Vcc = Max	Vcc = Max Vo = 2.7V		—	±1	μA
Iozl	(3-State output pins) ⁽⁴⁾	Vo = 0.5V		—	—	±1	
li	Input HIGH Current ⁽⁴⁾	Vcc = Max., VI = Vcc (Ma	Vcc = Max., VI = Vcc (Max.)		—	±1	μA
Vik	Clamp Diode Voltage	Vcc = Min, IIN = -18mA		—	-0.7	-1.2	V
Vн	Input Hysteresis	_		-	200	_	mV
lcc	Quiescent Power Supply Current	Vcc = Max., VIN = GND o	r Vcc	—	0.01	1	mA

OUTPUT DRIVE CHARACTERISTICS

Symbol	Parameter	Test Conditions ⁽¹⁾		Min.	Typ. ⁽²⁾	Max.	Unit
Vон	Output HIGH Voltage	Vcc = Min	Vcc = Min IOH = -8mA		3.3	—	V
		VIN = VIH or VIL	Iон = –15mA	2	3	—	
Vol	Output LOW Voltage	Vcc = Min	Vcc = Min IoL = 64mA		0.3	0.55	V
		VIN = VIH or VIL					
los	Short Circuit Current	Vcc = Max., Vo = GND ⁽³⁾		-60	-120	-225	mA
IOFF	Input/Output Power Off Leakage ⁽⁵⁾	Vcc = 0V, VIN or Vo \leq 4.5V		—	_	±1	μA

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, $+25^{\circ}C$ ambient.

3. Not more than one output should be tested at one time. Duration of the test should not exceed one second.

4. The test limit for this parameter is $\pm 5\mu A$ at TA = $-55^{\circ}C$.

5. This parameter is guaranteed but not tested.

POWER SUPPLY CHARACTERISTICS

Symbol	Parameter	Test Conditi	ons ⁽¹⁾	Min.	Typ. ⁽²⁾	Max.	Unit
Alcc	Quiescent Power Supply Current TTL Inputs HIGH	Vcc = Max. $VIN = 3.4V^{(3)}$		—	0.5	2	mA
ICCD	Dynamic Power Supply Current ⁽⁴⁾	Vcc = Max., Outputs Open <u>CEAB</u> and <u>OEAB</u> = GND <u>CEBA</u> = Vcc One Input Toggling 50% Duty Cycle	VIN = VCC VIN = GND	_	0.15	0.25	mA/ MHz
IC	Total Power Supply Current ⁽⁶⁾	Vcc = Max., Outputs Open fcp = 10MHz (LEAB) 50% Duty Cycle CEAB and OEAB = GND	VIN = VCC VIN = GND	_	1.5	3.5	mA
		CEBA = Vcc One Bit Toggling at fi = 5MHz 50% duty cycle	VIN = 3.4V VIN = GND	_	2	5.5	
		Vcc = Max., Outputs Open fcp = 10MHz (LEAB) 50% Duty Cycle CEAB and OEAB = GND	VIN = VCC VIN = GND	—	3.8	7.3(5)	mA
		CEBA = Vcc Eight Bits Toggling at fi = 2.5MHz 50% duty cycle	VIN = 3.4V VIN = GND	_	6	16.3 ⁽⁵⁾	

NOTES:

1. For conditions shown as Min. or Max., use appropriate value specified under Electrical Characteristics for the applicable device type.

2. Typical values are at Vcc = 5.0V, +25°C ambient.

3. Per TTL driven input; (VIN = 3.4V). All other inputs at Vcc or GND.

4. This parameter is not directly testable, but is derived for use in Total Power Supply Calculations.

5. Values for these conditions are examples of Δ Icc formula. These limits are guaranteed but not tested.

6. IC = IQUIESCENT + INPUTS + IDYNAMIC

 $IC = ICC + \Delta ICC DHNT + ICCD (fCP/2+ fiNi)$

Icc = Quiescent Current

 Δ Icc = Power Supply Current for a TTL High Input (VIN = 3.4V)

DH = Duty Cycle for TTL Inputs High

NT = Number of TTL Inputs at DH

ICCD = Dynamic Current caused by an Input Transition Pair (HLH or LHL)

fcP = Clock Frequency for Register Devices (Zero for Non-Register Devices)

fi = Output Frequency

Ni = Number of Outputs at fi

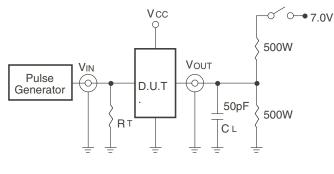
All currents are in milliamps and all frequencies are in megahertz.

SWITCHING CHARACTERISTICS OVER OPERATING RANGE

			74FCT	543AT	74FC1	543CT	74FCT	543DT	
Symbol	Parameter	Condition ⁽¹⁾	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Min. ⁽²⁾	Max.	Unit
tPLH	Propagation Delay	CL = 50pF	1.5	6.5	1.5	5.3	1.5	4.4	ns
t PHL	TransparantMode	$RL = 500\Omega$							
	Ax to Bx or Bx to Ax								
tPLH	Propagation Delay		1.5	8	1.5	7	1.5	5	ns
t PHL	LEBA to Ax, LEAB to Bx								
tPZH	Output Enable Time		1.5	9	1.5	8	1.5	5.4	ns
tPZL	OEBA or OEAB to Ax or Bx								
	CEBA or CEAB to Ax or Bx								
tPHZ	Output Disable Time		1.5	7.5	1.5	6.5	1.5	4.3	ns
tPLZ	OEBA or OEAB to Ax or Bx								
	CEBA or CEAB to Ax or Bx								
tsu	Set-up Time, HIGH or LOW		2	—	2	—	1.5	—	ns
	Ax or Bx to LEBA or LEAB								
tΗ	Hold Time, HIGH or LOW		2	—	2	_	1.5	—	ns
	Ax or Bx to LEBA or LEAB								
tw	LEBA or LEAB Pulse Width LOW		5	_	5	—	3 ⁽³⁾	_	ns

NOTES:

1. See test circuit and waveforms.


2. Minimum limits are guaranteed but not tested on Propagation Delays.

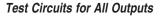
3. This limit is guaranteed but not tested.

IDT74FCT543AT/CT/DT **FASTCMOSOCTALLATCHEDTRANSCEIVER**

INDUSTRIAL TEMPERATURE RANGE

TEST CIRCUITS AND WAVEFORMS

Octal Link


tн

tREM

1.5V 0V

ЗV

1.5V 0V

Isu

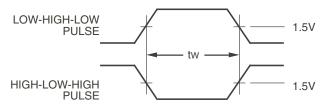
DATA 🔽

INPUT

TIMING

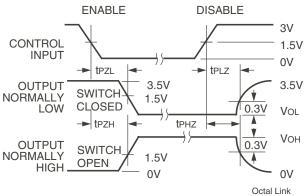
ASYNCHRONOUS CONTROL

INPUT


SWITCH POSITION

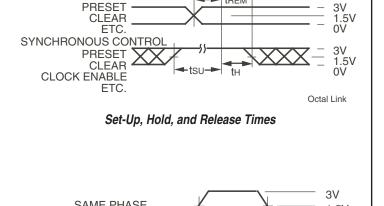
Test	Switch
Open Drain Disable Low	Closed
Enable Low	
All Other Tests	Open

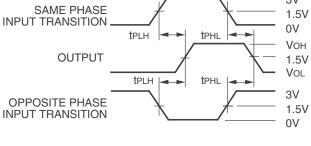
DEFINITIONS:


CL = Load capacitance: includes jig and probe capacitance.

RT = Termination resistance: should be equal to ZOUT of the Pulse Generator.

Pulse Width

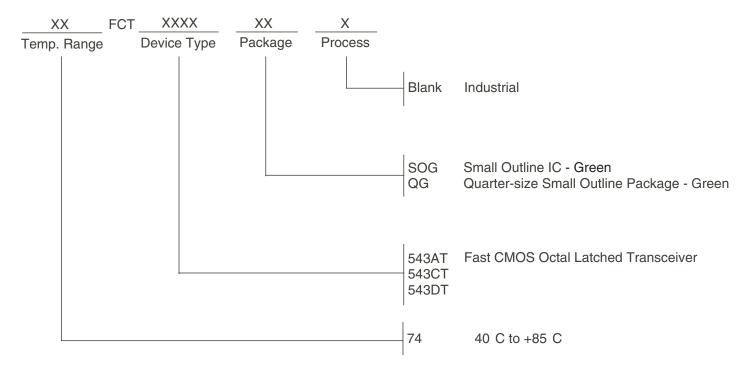

Octal Link



Enable and Disable Times

NOTES:

- 1. Diagram shown for input Control Enable-LOW and input Control Disable-HIGH.
- 2. Pulse Generator for All Pulses: Rate ≤ 1.0MHz; tF ≤ 2.5ns; tR ≤ 2.5ns.



Propagation Delay

Octal Link

6

ORDERING INFORMATION

Datasheet Document History

10/10/09 Pg. 6 Updated the ordering information by removing the "IDT" notation and non RoHS part.

CORPORATE HEADQUARTERS 6024 Silver Creek Valley Road San Jose, CA 95138 for SALES: 800-345-7015 or 408-284-8200 fax: 408-284-2775 www.idt.com for Tech Support: logichelp@idt.com