imall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

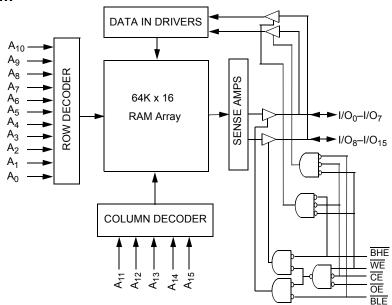
CY62126ESL MoBL[®] Automotive

1-Mbit (64 K × 16) Static RAM

Features

- Very high speed: 45 ns
- Wide voltage range: 2.2 V to 3.6 V and 4.5 V to 5.5 V
- Ultra low standby power
 Typical standby current: 1 μA
 Maximum standby current: 4 μA
- Ultra low active power
 Typical active current: 1.3 mA at f = 1 MHz
- Easy memory expansion with \overline{CE} , and \overline{OE} features
- Automatic power down when deselected
- Complementary metal oxide semiconductor (CMOS) for optimum speed and power
- Available in Pb-free 44-Pin thin small outline package (TSOP) II package

Functional Description


The CY62126ESL is a high performance CMOS static RAM organized as 64K words by 16 bits. This device features advanced circuit design to provide ultra low active current. This is ideal for providing More Battery Life™ (MoBL[®]) in portable

applications such as cellular telephones. The device also has an automatic power down feature that significantly reduces power consumption when addresses are not toggling. Placing the device into standby mode reduces power consumption by more than 99 percent when deselected ($\overline{\text{CE}}$ HIGH). The input and output pins (I/O₀ through I/O₁₅) are placed in a high impedance state when the device is deselected ($\overline{\text{CE}}$ HIGH), the outputs are disabled ($\overline{\text{OE}}$ HIGH), both Byte High Enable and Byte Low Enable are disabled ($\overline{\text{BHE}}$, BLE HIGH) or during a write operation ($\overline{\text{CE}}$ LOW and WE LOW).

To write to the device, take Chip Enable (\overline{CE}) and Write Enable (\overline{WE}) inputs LOW. If Byte Low Enable (BLE) is LOW, then data from I/O pins (I/O₀ through I/O₇) is written into the location specified on the address pins (A₀ through A₁₅). If Byte High Enable (BHE) is LOW, then data from I/O pins (I/O₈ through I/O₁₅) is written into the location specified on the address pins (A₀ through A₁₅).

To read <u>from</u> the device, take Chip Enable ($\overline{\text{CE}}$) and Output Enable ($\overline{\text{OE}}$) LOW while forcing the Write Enable (WE) HIGH. If Byte Low Enable (BLE) is LOW, then data from the memory location specified by <u>the</u> address pins appear on I/O₀ to I/O₇. If Byte High Enable (BHE) is LOW, then data from memory appears on I/O₈ to I/O₁₅. See the Truth Table on page 11 for a complete description of read and write modes.

Logic Block Diagram

Cypress Semiconductor Corporation Document Number: 001-66522 Rev. *B

Contents

Pin Configuration	3
Product Portfolio	
Maximum Ratings	4
Operating Range	
Electrical Characteristics	
Capacitance	5
Thermal Resistance	
AC Test Loads and Waveforms	
Data Retention Characteristics	6
Data Retention Waveform	
Switching Characteristics	
Switching Waveforms	
Truth Table	

Ordering Information	12
Ordering Code Definitions	12
Package Diagram	13
Acronyms	14
Document Conventions	14
Units of Measure	14
Document History Page	15
Sales, Solutions, and Legal Information	16
Worldwide Sales and Design Support	16
Products	16
PSoC® Solutions	16
Cypress Developer Community	16
Technical Support	

Pin Configuration

44-pin TSOP II pinout (Top View) ^[1]

$\begin{array}{cccc} A_4 \ \square \ 1 \\ A_3 \ \square \ 2 \\ \end{array} \begin{array}{cccc} 44 \ \square \ A_5 \\ 43 \ \square \ A_6 \\ \end{array}$	
<u>''3 L 43 L ''6</u>	
$A_2 \square 3$ $42 \square A_7$	
	Ε
	Ξ
	15
I/O ₂ 9 36 1/O	
	12
$V_{CC} \square 11$ 34 $\square V_{SS}$	
$V_{SS} \square 12$ 33 $\square V_{CC}$	~
I/O ₄ 13 32 I/O	, 11
I/O ₅ 14 31 1/O	10
I/O ₆ □15 30 □ I/O ₆	. с Э
I/O ₇ □16 29 □ I/O ₈	
WE 17 28 NC	
$A_{15} \square 18$ 27 $\square A_8$	
$A_{14} \square 19$ 26 $\square A_9$	
A ₁₃ 20 25 A ₁₀	
$A_{12} \square 21$ 24 $\square A_{11}$	
NC 22 23 NC	

Product Portfolio

					Cu	rrent Co	nsumpti	ion		
Product	Range	V _{CC} Range (V) ^[2]	Speed	0	perating	l I _{CC} , (mA	4)	Standb	Standby, I _{SB2}	
FIGUUCE	Trange	VCC Italige (V)	(ns)	f = 1 MHz		f = 1 MHz f = f _{max}		(μΑ)		
				Тур [3]	Мах	Тур [3]	Мах	Тур [3]	Мах	
CY62126ESL	Automotive-A	2.2 V–3.6 V and 4.5 V–5.5 V	45	1.3	2	11	16	1	4	

Notes

NC pins are not connected on the die.
 Datasheet specifications are not guaranteed for V_{CC} in the range of 3.6 V to 4.5 V.
 Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C.

Maximum Ratings

Exceeding maximum ratings may impair the useful life of the device. These user guidelines are not tested.

Storage temperature65 °C to +150 °C
Ambient temperature with power applied55 °C to +125 °C
Supply voltage to ground potential $^{[4, 5]}$ –0.5 V to 6.0 V
DC voltage applied to outputs in High Z state ^[4, 5] 0.5 V to 6.0 V
DC input voltage ^[4, 5] 0.5 V to 6.0 V

Output current into outputs (low)	20 mA
Static discharge voltage	
(MIL-STD-883, method 3015)	> 2001 V
Latch-up current	> 200 mA

Operating Range

Device	Range	Ambient Temperature	V_{CC} ^[6]
CY62126ESL	Automotive-A	–40 °C to +85 °C	2.2 V–3.6 V, and 4.5 V–5.5 V

Electrical Characteristics

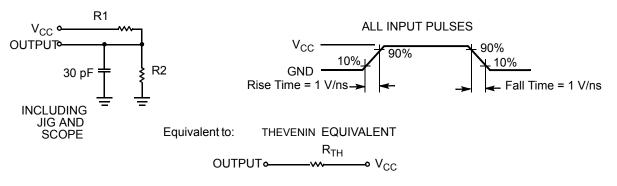
Over the Operating Range

Parameter	Description	Test Ca	nditiono		45 ns		Unit
Parameter	Description	Test Co	nations	Min	Typ ^[7]	Max	Unit
V _{OH}	Output high voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OH} = -0.1 mA	2.0	-	-	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6	I _{OH} = -1.0 mA	2.4	-	-	
		4.5 <u><</u> V _{CC} <u><</u> 5.5	I _{OH} = -1.0 mA	2.4	-	-	
V _{OL}	Output low voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	I _{OL} = 0.1 mA	-	-	0.4	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6	I _{OL} = 2.1 mA	-	-	0.4	
		4.5 <u><</u> V _{CC} <u><</u> 5.5	I _{OL} = 2.1 mA	-	-	0.4	
V _{IH}	Input high voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7		1.8	-	V _{CC} + 0.3	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6		2.2	-	V _{CC} + 0.3	
		4.5 <u>≤</u> V _{CC} <u>≤</u> 5.5		2.2	-	V _{CC} + 0.5	
V _{IL}	Input low voltage	2.2 <u>≤</u> V _{CC} <u>≤</u> 2.7	$2.2 \le V_{CC} \le 2.7$		-	0.6	V
		2.7 <u><</u> V _{CC} <u><</u> 3.6		-0.3	-	0.8	
		4.5 <u><</u> V _{CC} <u><</u> 5.5		-0.5	-	0.8	
I _{IX}	Input leakage current	$GND \leq V_I \leq V_{CC}$		–1	-	+1	μA
I _{OZ}	Output leakage current	$GND \leq V_O \leq V_{CC}, Q$	Output disabled	–1	-	+1	μA
I _{CC}	V _{CC} operating supply current	$f = f_{max} = 1/t_{RC}$	$V_{CC} = V_{CCmax}$	-	11	16	mA
		f = 1 MHz	I _{OUT} = 0 mA, CMOS levels	_	1.3	2.0	
I _{SB1}	Automatic CE power-down current — CMOS Inputs	$\label{eq:central_constraints} \begin{split} \overline{CE} &\geq V_{CC} - 0.2 \text{ V}, \\ V_{IN} &\geq V_{CC} - 0.2 \text{ V or } V_{IN} \leq 0.2 \text{ V}, \\ f &= f_{max} \text{ (address and data only)}, \\ f &= 0 \text{ (OE and } \overline{WE}\text{)}, \ V_{CC} &= V_{CC(max)} \end{split}$		_	1	4	μΑ
I _{SB2} ^[8]	Automatic CE power-down current — CMOS inputs	$\label{eq:constraint} \begin{array}{ c c c } \hline \hline CE \geq V_{CC} - 0.2 \ V \\ \hline V_{IN} \geq V_{CC} - 0.2 \ V \\ \hline f = 0, \ V_{CC} = V_{CC}(r) \end{array}$		-	1	4	μA

Notes

- A V_{IL}(min) = -2.0 V for pulse durations less than 20 ns. 5. V_{IH}(max) = V_{CC} + 0.75 V for pulse durations less than 20 ns. 6. Full device AC operation assumes a minimum of 100 μ s ramp time from 0 to V_{CC} (min) and 200 μ s wait time after V_{CC} stabilization. 7. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at V_{CC} = V_{CC(typ)}, T_A = 25 °C. 8. Chip enable (CE) must be HIGH at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating.

Capacitance


Parameter ^[9]	Description	Test Conditions	Max	Unit
C _{IN}	Input capacitance	$T_A = 25 \text{ °C}, f = 1 \text{ MHz}, V_{CC} = V_{CC(typ)}$	10	рF
C _{OUT}	Output capacitance		10	рF

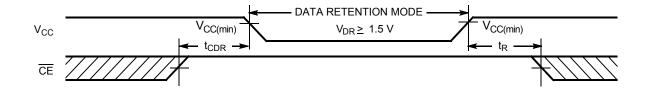
Thermal Resistance

Parameter ^[9]	Description	Test Conditions	TSOP II	Unit
JA	Thermal resistance (junction to ambient)	Still air, soldered on a 3 × 4.5 inch, two-layer printed circuit board	28.2	°C/W
- 30	Thermal resistance (junction to case)		3.4	°C/W

AC Test Loads and Waveforms

Figure 1. AC Test Loads and Waveforms

Parameters	2.50 V	3.0 V	5.0 V	Unit
R1	16600	1103	1800	Ω
R2	15400	1554	990	Ω
R _{TH}	8000	645	639	Ω
V _{TH}	1.2	1.75	1.77	V


Data Retention Characteristics

Over the Operating Range

Parameter	Description	Conditions		Min	Typ ^[10]	Max	Unit
V _{DR}	V_{CC} for data retention			1.5	-	-	V
I _{CCDR} ^[11]	Data retention current	$\label{eq:cell} \begin{split} \overline{CE} &\geq V_{CC} - 0.2 \; V, \\ V_{IN} &\geq V_{CC} - 0.2 \; V \; or \\ V_{IN} &\leq 0.2 \; V \end{split}$	V _{CC} = 1.5 V	_	-	3	μΑ
t _{CDR} ^[12]	Chip deselect to data retention time			0	-	-	ns
t _R ^[13]	Operation recovery time			45	_	-	ns

Data Retention Waveform

Notes 10. Typical values are included for reference only and are not guaranteed or tested. Typical values are measured at $V_{CC} = V_{CC(typ)}$, $T_A = 25$ °C. 11. Chip enable (\overline{CE}) must be HIGH at CMOS level to meet the I_{SB2} / I_{CCDR} spec. Other inputs can be left floating. 12. Tested initially and after any design or process changes that may affect these parameters. 13. Full device operation requires linear V_{CC} ramp from V_{DR} to $V_{CC(min)} \ge 100 \,\mu s$ or stable at $V_{CC(min)} \ge 100 \,\mu s$.

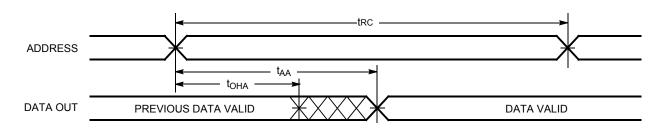
Switching Characteristics

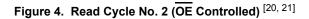
Over the Operating Range

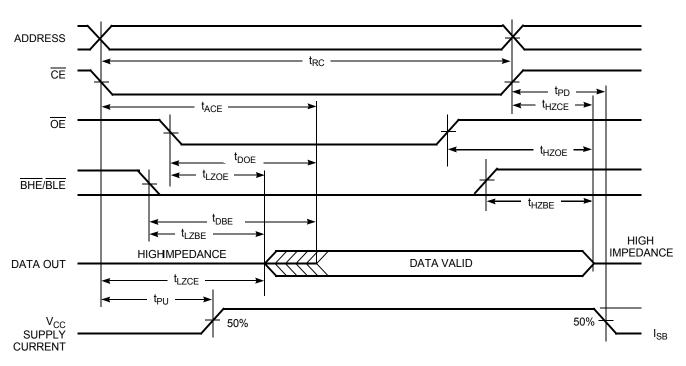
Parameter ^[14]	Description	45	45 ns	
Parameter	Description	Min	Max	Unit
Read Cycle				
t _{RC}	Read cycle time	45	-	ns
t _{AA}	Address to data valid	-	45	ns
t _{OHA}	Data hold from address change	10	-	ns
t _{ACE}	CE LOW to data valid	-	45	ns
t _{DOE}	OE LOW to data valid	-	22	ns
t _{LZOE}	OE LOW to Low Z ^[15]	5	-	ns
t _{HZOE}	OE HIGH to High Z ^[15, 16]	_	18	ns
t _{LZCE}	CE LOW to Low Z ^[15]	10	-	ns
t _{HZCE}	CE HIGH to High Z ^[15, 16]	_	18	ns
t _{PU}	CE LOW to power up	0	-	ns
t _{PD}	CE HIGH to power up	_	45	ns
t _{DBE}	BHE / BLE LOW to data valid	_	22	ns
t _{LZBE}	BHE / BLE LOW to Low Z ^[15]	5	-	ns
t _{HZBE}	BHE / BLE HIGH to High Z ^[15, 16]	_	18	ns
Write Cycle [17,	18]		•	
t _{WC}	Write cycle time	45	_	ns
t _{SCE}	CE LOW to write end	35	-	ns
t _{AW}	Address setup to write end	35	_	ns
t _{HA}	Address Hold from write end	0	-	ns
t _{SA}	Address setup to write start	0	-	ns
t _{PWE}	WE pulse width	35	-	ns
t _{BW}	BHE / BLE pulse width	35	-	ns
t _{SD}	Data setup to write end	25	-	ns
t _{HD}	Data hold from write end	0	-	ns
t _{HZWE}	WE LOW to High Z ^[15, 16]	-	18	ns
t _{LZWE}	WE HIGH to Low Z ^[15]	10	-	ns

Notes

14. Test Conditions for all parameters other than tri-state parameters assume signal transition time of 3 ns or less (1 V/ns), timing reference levels of V_{CC(typ})/2, input pulse levels of 0 to V_{CC(typ}), and output loading of the specified I_{OL}/I_{OH} as shown in the Figure 1 on page 5.
 15. At any given temperature and voltage condition, t_{HZCE} is less than t_{LZCE}, t_{HZBE} is less than t_{LZDE}, t_{HZOE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE}, and t_{HZWE} is less than t_{LZOE} for any given


device.


device.
16. t_{HZOE}, t_{HZEE}, and t_{HZWE} transitions are measured when the <u>output</u> enter a high impedance state.
17. The internal write time of the memory is defined by the overlap of WE, CE = V_{IL}. All signals must be ACTIVE to initiate a write and any of these signals can terminate a write by going INACTIVE. The data input setup and <u>hold</u> timing must <u>be</u> referenced to the edge of the signal that terminates the write.
18. The minimum write pulse width for Write Cycle No. 3 (WE controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.



Switching Waveforms

Figure 3. Read Cycle No. 1 (Address Transition Controlled) ^[19, 20]

Notes

19. Device is continuously selected. \overline{OE} , $\overline{CE} = V_{IL}$. 20. \overline{WE} is high for read cycles. 21. Address valid before or similar to \overline{CE} transition low.

Switching Waveforms (continued)

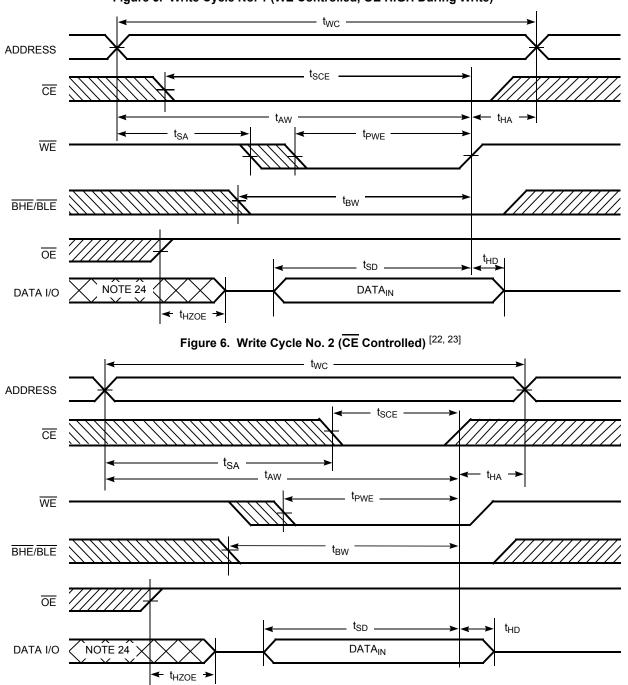


Figure 5. Write Cycle No. 1 (WE Controlled, OE HIGH During Write) ^[22, 23]

Notes

22. Data I/O is high impedance if $\overline{OE} = V_{IH.}$ 23. If \overline{CE} goes high simultaneously with WE high, the output remains in high impedance state. 24. During this period, the I/Os are in output state. Do not apply input signals.

Switching Waveforms (continued)

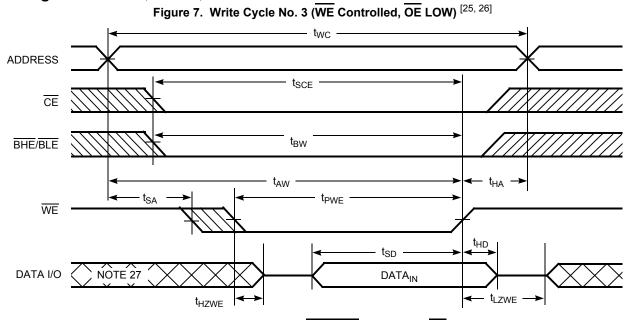
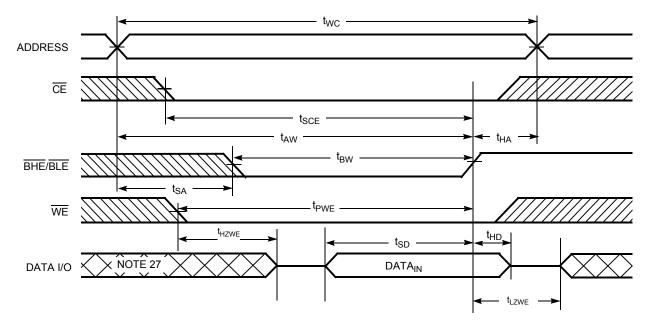



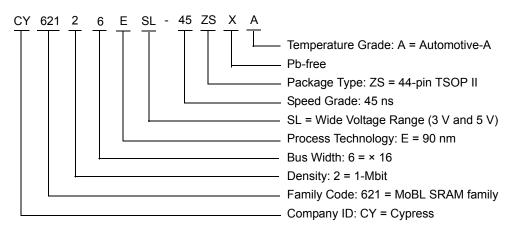
Figure 8. Write Cycle No. 4 (BHE/BLE Controlled, OE LOW) [25]

Notes

- 25. If CE goes high simultaneously with WE high, the output remains in high impedance state.
 26. The minimum write pulse width for Write Cycle No. 3 (WE controlled, OE LOW) should be sum of t_{HZWE} and t_{SD}.
 27. During this period, the I/Os are in output state. Do not apply input signals.

Truth Table

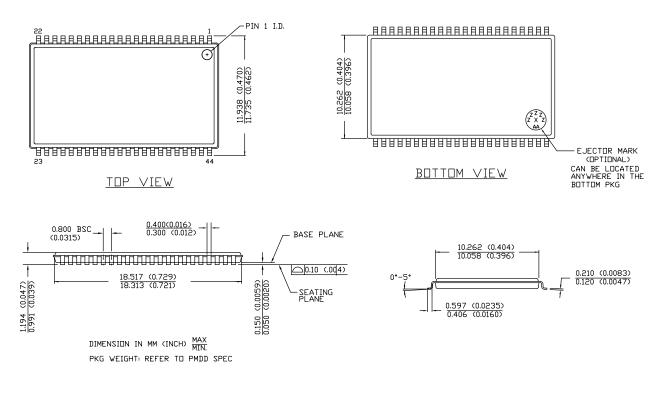
CE ^[28]	WE	OE	BHE	BLE	Inputs/Outputs	Mode	Power
Н	Х	Х	Х	Х	High Z	Deselect or power-down	Standby (I _{SB})
L	Х	Х	Н	Н	High Z	Output disabled	Active (I _{CC})
L	Н	L	L	L	Data out (I/O ₀ –I/O ₁₅)	Read	Active (I _{CC})
L	Н	L	Н	L	Data out (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Read	Active (I _{CC})
L	Н	L	L	Н	Data out (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Read	Active (I _{CC})
L	Н	Н	L	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	Н	L	High Z	Output disabled	Active (I _{CC})
L	Н	Н	L	Н	High Z	Output disabled	Active (I _{CC})
L	L	Х	L	L	Data in (I/O ₀ –I/O ₁₅)	Write	Active (I _{CC})
L	L	Х	Н	L	Data in (I/O ₀ –I/O ₇); I/O ₈ –I/O ₁₅ in High Z	Write	Active (I _{CC})
L	L	Х	L	Н	Data in (I/O ₈ –I/O ₁₅); I/O ₀ –I/O ₇ in High Z	Write	Active (I _{CC})



Ordering Information

Spee (ns)		Package Diagram	Package Type	Operating Range
45	CY62126ESL-45ZSXA	51-85087	44-pin TSOP II (Pb-free)	Automotive-A

Contact your local Cypress sales representative for availability of these parts.


Ordering Code Definitions

Package Diagram

Figure 9. 44-pin TSOP II Package Outline, 51-85087

51-85087 *E

Acronyms

Acronym	Description			
BHE	Byte High Enable			
BLE	Byte Low Enable			
CMOS	Complementary Metal Oxide Semiconductor			
CE	Chip Enable			
I/O	Input/Output			
OE	Output Enable			
SRAM	Static Random Access Memory			
TSOP	Thin Small Outline Package			
WE	Write Enable			

Document Conventions

Units of Measure

Symbol	Unit of Measure			
°C	degree Celsius			
MHz	megahertz			
μA	microampere			
mA	milliampere			
mV	millivolt			
ns	nanosecond			
Ω	ohm			
pF	picofarad			
V	volt			
W	watt			

Document History Page

Revision	ECN	Submission Date	Orig. of Change	Description of Change
**	3144223	01/17/2011	RAME	New data sheet for Automotive parts.
*A	4297746	03/06/2014	MEMJ	Updated Functional Description: Removed reference to the Application Note AN1064. Updated Product Portfolio: No technical updates. Changed format only. Updated Switching Characteristics: Added Note 18 and referred the same note in "Write Cycle". Updated Switching Waveforms: Added Note 26 and referred the same note in Figure 7. Updated Package Diagram: spec 51-85087 – Changed revision from *C to *E. Updated to new template.
				Completing Sunset Review.
*B	4582964	11/29/2014	VINI	Updated Maximum Ratings: Referred Notes 4, 5 in "Supply voltage to ground potential".

Sales, Solutions, and Legal Information

Worldwide Sales and Design Support

Cypress maintains a worldwide network of offices, solution centers, manufacturer's representatives, and distributors. To find the office closest to you, visit us at Cypress Locations.

Products	
Automotive	cypress.com/go/automotive
Clocks & Buffers	cypress.com/go/clocks
Interface	cypress.com/go/interface
Lighting & Power Control	cypress.com/go/powerpsoc
	cypress.com/go/plc
Memory	cypress.com/go/memory
PSoC	cypress.com/go/psoc
Touch Sensing	cypress.com/go/touch
USB Controllers	cypress.com/go/USB
Wireless/RF	cypress.com/go/wireless

PSoC[®] Solutions

psoc.cypress.com/solutions PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP

Cypress Developer Community Community | Forums | Blogs | Video | Training

Technical Support cypress.com/go/support

© Cypress Semiconductor Corporation, 2011-2014. The information contained herein is subject to change without notice. Cypress Semiconductor Corporation assumes no responsibility for the use of any circuitry other than circuitry embodied in a Cypress product. Nor does it convey or imply any license under patent or other rights. Cypress products are not warranted nor intended to be used for medical, life support, life saving, critical control or safety applications, unless pursuant to an express written agreement with Cypress. Furthermore, Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress products in life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Any Source Code (software and/or firmware) is owned by Cypress Semiconductor Corporation (Cypress) and is protected by and subject to worldwide patent protection (United States and foreign), United States copyright laws and international treaty provisions. Cypress hereby grants to licensee a personal, non-exclusive, non-transferable license to copy, use, modify, create derivative works of, and compile the Cypress Source Code and derivative works for the sole purpose of creating custom software and or firmware in support of licensee product to be used only in conjunction with a Cypress integrated circuit as specified in the applicable agreement. Any reproduction, modification, translation, compilation, or representation of this Source Code except as specified above is prohibited without the express written permission of Cypress.

Disclaimer: CYPRESS MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARD TO THIS MATERIAL, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. Cypress reserves the right to make changes without further notice to the materials described herein. Cypress does not assume any liability arising out of the application or use of any product or circuit described herein. Cypress does not authorize its products for use as critical components in life-support systems where a malfunction or failure may reasonably be expected to result in significant injury to the user. The inclusion of Cypress' product in a life-support systems application implies that the manufacturer assumes all risk of such use and in doing so indemnifies Cypress against all charges.

Use may be limited by and subject to the applicable Cypress software license agreement.

Document Number: 001-66522 Rev. *B

Revised November 29, 2014

Page 16 of 16

MoBL is a registered trademark, and More Battery Life is a trademark, of Cypress Semiconductor. All product and company names mentioned in this document are the trademarks of their respective holders.