

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

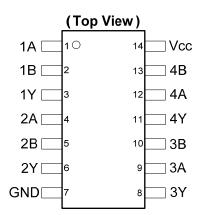
Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

QUADRUPLE 2-INPUT AND GATES

Description

The 74HC08 provides provides four independent 2-input AND gates with standard push-pull outputs. The device is designed for operation with a power supply range of 2.0V to 6.0V.


The gates perform the Boolean function:

$$Y = A \bullet B \text{ or } Y = \overline{\overline{A} + \overline{B}}$$

Features

- Wide Supply Voltage Range from 2.0V to 6.0V
- Sinks or Sources 4mA at V_{CC} = 4.5V
- CMOS Low Power Consumption
- Schmitt Trigger Action at All Inputs
- ESD Protection Exceeds JESD 22
 - 200-V Machine Model (A115-A)
 - 2000-V Human Body Model (A114-A)
 - Exceeds 1000-V Charged Device Model (C101C)
- Range of Package Options SO-14 and TSSOP-14
- Totally Lead-Free & Fully RoHS Compliant (Notes 1 & 2)
- Halogen and Antimony Free. "Green" Device (Note 3)

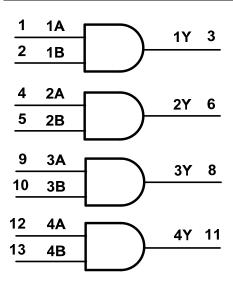
Pin Assignments

SO-14 / TSSOP-14

Applications

- General Purpose Logic
- · Wide array of products such as:
 - PCs, Networking, Notebooks, Netbooks
 - Computer Peripherals, Hard Drives, CD/DVD ROM
 - TV, DVD, DVR, Set Top Box

Notes: 1. No pur


- 1. No purposely added lead. Fully EU Directive 2002/95/EC (RoHS) & 2011/65/EU (RoHS 2) compliant.
- 2. See http://www.diodes.com for more information about Diodes Incorporated's definitions of Halogen- and Antimony-free, "Green" and Lead-free.
- 3. Halogen- and Antimony-free "Green" products are defined as those which contain <900ppm bromine, <900ppm chlorine (<1500ppm total Br + Cl) and <1000ppm antimony compounds.

Pin Descriptions

Pin Number	Pin Name	Function
1	1A	Data Input
2	1B	Data Input
3	1Y	Data Output
4	2A	Data Input
5	2B	Data Input
6	2Y	Data Output
7	GND	Ground
8	3Y	Data Output
9	3A	Data Input
10	3B	Data Input
11	4Y	Data Output
12	4A	Data Input
13	4B	Data Input
14	Vcc	Supply Voltage

Logic Diagram

Function Table

Inp	Output	
Α	В	Υ
L	L	L
L	Н	L
Н	L	L
Н	Н	Н

Absolute Maximum Ratings (Note 4) (@TA = +25°C, unless otherwise specified.)

Symbol	Description	Rating	Unit
ESD HBM	Human Body Model ESD Protection	2	KV
ESD CDM	Charged Device Model ESD Protection	1	KV
ESD MM	Machine Model ESD Protection	200	V
V _{CC}	Supply Voltage Range	-0.5 to +7.0	V
VI	Input Voltage Range (Note 5)	-0.5 to +7.0	V
I _{IK}	Input Clamp Current $V_I < -0.5V$ or $V_{CC} + 0.5V$	±20	mA
lok	Output Clamp Current $V_O < -0.5V$ or $V_O > V_{CC} +0.5V$	±20	mA
Io	Continuous output current -0.5V < V _O V _{CC} +0.5V	+/- 25	mA
Icc	Continuous current through V _{CC}	50	mA
I _{GND}	Continuous current through GND	-50	mA
TJ	Operating Junction Temperature	-40 to +150	°C
T _{STG}	T _{STG} Storage Temperature		°C
P _{TOT}	Total Power Dissipation	500	mW

Notes:

Recommended Operating Conditions (Note 6) (@TA = +25°C, unless otherwise specified.)

Symbol	Parameter	Conditions	Min	Max	Unit
V_{CC}	Supply Voltage		2.0	6.0	V
VI	Input Voltage		0	V _{CC}	V
Vo	Output Voltage		0	V _{CC}	V
		$V_{CC} = 2.0V$		625	
$\Delta t/\Delta V$	Input Transition Rise or Fall Rate	V_{CC} = 4.5 V	_	140	ns/V
		$V_{CC} = 6.0V$	_	85	
T _A	Operating Free-Air Temperature		-40	+125	°C

Note: 6. Unused inputs should be held at V_{CC} or Ground.

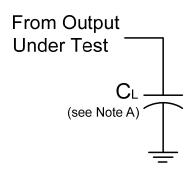
^{4.} Stresses beyond the absolute maximum may result in immediate failure or reduced reliability. These are stress values and device operation should be within recommend values.

^{5.} Input Voltage cannot exceed V_{CC} to the extent the Maximum clamp current is exceeded

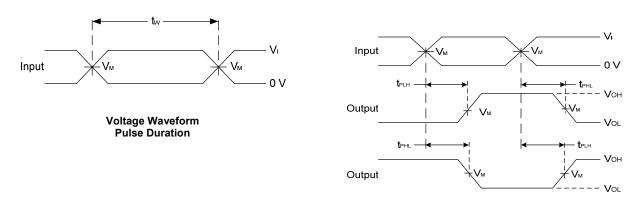
Electrical Characteristics (@T_A = +25°C, unless otherwise specified.)

Cumbal	Parameter	Test Conditions	V	T _A = -40°	C to +85°C	T _A = -40°C	to +125°C	l lmi4
Symbol	Parameter	rest Conditions	V _{CC}	Min	Max	Min	Max	Unit
			2.0V	1.5	_	1.5	_	
V_{IH}	High-level Input Voltage		4.5V	3.15	_	3.15	_	V
			6.0V	4.2	_	4.2	_	
			2.0V	_	0.5	_	0.5	
V_{IL}	Low-level Input Voltage		4.5V	_	1.35	_	1.35	V
			6.0V	_	1.8		1.8	
		$I_{OH} = -20 \mu A$	2.0V	1.9		1.9	_	
		I _{OH} = -20μA	4.5V	4.4	_	4.4	_	V
V_{OH}	Y _{OH} High-level Output Voltage	I _{OH} = -20μA	6.0V	5.9	_	5.9	_	
		I _{OH} = -4.0mA	4.5V	3.84	_	3.7	_	
		I _{OH} = -5.2mA	6.0V	5.34	_	5.2	_	
		I _{OL} = 20μA	2.0V	_	0.1	_	0.1	
		I _{OL} = 20μA	4.5V	_	0.1	_	0.1	
V_{OL}	Low-level Output Voltage	I _{OL} = 20μA	6.0V	_	0.1	_	0.1	V
		I _{OL} = 4mA	4.5V	_	0.33	_	0.44	
		I _{OL} = 5.2 mA	6.0V	_	0.33	_	0.44	
Ιį	Input Current	V _I =GND to 5.5V	6.0V	_	± 1	_	± 1	μΑ
Icc	Supply Current	$V_I = GND \text{ or } V_{CC},$ $I_O = 0$	6.0V	_	20	_	40	μΑ

Switching Characteristics


Symbol	Parameter	Test	Vcc		T _A = +25°0	3	-40°C to +85°C	-40°C to +125°C	Unit	
Syllibol	Farameter	Conditions	VCC	Min	Тур.	Max	Max	Max	Oilit	
	Description	Figure 1	2.0V	_	25	90	115	125		
t_{PD}	Propagation Delay A _N to Y _N	Figure 1 $C_L = 50pF$	4.5V	_	9	18	23	27	ns	
	Delay AN to TN	Delay AN to 1 N	6.0V –	CL = SUPF	_	7	15	20	23	
		Figure 1	2.0V	_	19	75	95	110		
tt	Transition Time	Figure 1 $C_L = 50pF$	4.5V	_	7	15	19	22	ns	
		CL = 30pi	6.0V	_	6	13	16	19		

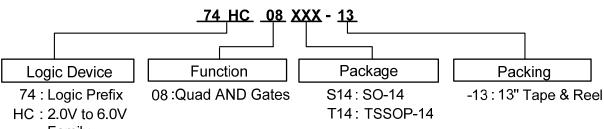
Operating Characteristics (@T_A = +25°C, unless otherwise specified.)


Parameter		Test Conditions	V _{CC} = 6V Typ	Unit
C _{pd}	Power Dissipation Capacitance per Gate	f = 1 MHz	20	pF
CI	Input Capacitance	$V_I = V_{CC} - \text{or GND}$	4	pF

Parameter Measurement Information

V _{CC}	Inp	outs	V _M	CL
	Vı	t _r /t _f		
2.0V to 6.0V	V _{CC}	6ns	V _{CC} /2	15pF,50pF

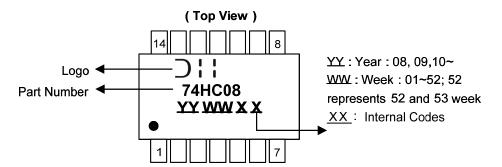
Voltage Waveform Propagation Delay Times Inverting and Non Inverting Outputs


Notes: A. Includes test lead and test apparatus capacitance.

- B. All pulses are supplied at pulse repetition rate ≤ 1 MHz
- C. Inputs are measured separately one transition per measurement
- D. t_{PLH} and t_{PHL} are the same as t_{PD}

Figure 1 Load Circuit and Voltage Waveforms

Ordering Information

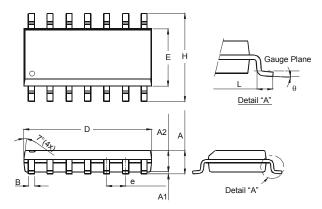


Family

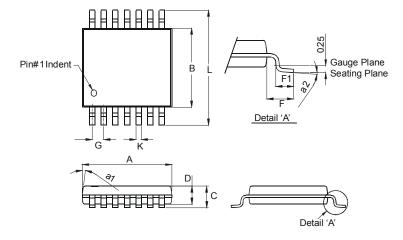
ſ	Davies	Dookona Codo	Dookoning	7" Tap	e and Reel
	Device	Package Code	Packaging	Quantity	Part Number Suffix
ineen	74HC08S14-13	S14	SO-14	2500/Tape & Reel	-13
,	74HC08T14-13	T14	TSSOP-14	2500/Tape & Reel	-13

Marking Information

(1) SO-14, TSSOP-14


Part Number	Package
74HC08S14	SO-14
74HC08T14	TSSOP-14

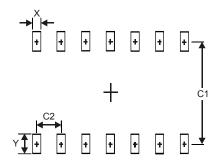
Package Outline Dimensions (All dimensions in mm.)


Please see AP02002 at http://www.diodes.com/datasheets/ap02002.pdf for latest version.

Package Type: SO-14

	SO-14					
Dim	Min	Max				
Α	1.47	1.73				
A1	0.10	0.25				
A2	1.45	Тур				
В	0.33	0.51				
D	8.53	8.74				
Е	3.80	3.99				
е	1.27	Тур				
Н	5.80	6.20				
L	0.38	1.27				
θ	0°	8°				
All Di	All Dimensions in mm					

Package Type: TSSOP-14

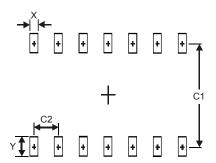


	TSSOP-14					
Dim	Min	Max				
a1	7° (4X)				
a2	0°	8°				
Α	4.9	5.10				
В	4.30	4.50				
С	_	1.2				
D	0.8	1.05				
F	1.00	Тур				
F1	0.45	0.75				
G	0.65 Typ					
K	0.19	0.30				
L	6.40 Typ					
All Dimensions in mm						

Suggested Pad Layout

Please see AP02001 at http://www.diodes.com/datasheets/ap02001.pdf for latest version.

Package Type: SO-14



Dimensions	Value (in mm)
Х	0.60
Y	1.50
C1	5.4
C2	1.27

Suggested Pad Layout (cont.)

Package Type: TSSOP-14

Dimensions	Value (in mm)
Х	0.45
Υ	1.45
C1	5.9
C2	0.65

IMPORTANT NOTICE

DIODES INCORPORATED MAKES NO WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, WITH REGARDS TO THIS DOCUMENT, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE (AND THEIR EQUIVALENTS UNDER THE LAWS OF ANY JURISDICTION).

Diodes Incorporated and its subsidiaries reserve the right to make modifications, enhancements, improvements, corrections or other changes without further notice to this document and any product described herein. Diodes Incorporated does not assume any liability arising out of the application or use of this document or any product described herein; neither does Diodes Incorporated convey any license under its patent or trademark rights, nor the rights of others. Any Customer or user of this document or products described herein in such applications shall assume all risks of such use and will agree to hold Diodes Incorporated and all the companies whose products are represented on Diodes Incorporated website, harmless against all damages.

Diodes Incorporated does not warrant or accept any liability whatsoever in respect of any products purchased through unauthorized sales channel. Should Customers purchase or use Diodes Incorporated products for any unintended or unauthorized application, Customers shall indemnify and hold Diodes Incorporated and its representatives harmless against all claims, damages, expenses, and attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized application.

Products described herein may be covered by one or more United States, international or foreign patents pending. Product names and markings noted herein may also be covered by one or more United States, international or foreign trademarks.

This document is written in English but may be translated into multiple languages for reference. Only the English version of this document is the final and determinative format released by Diodes Incorporated.

LIFE SUPPORT

Diodes Incorporated products are specifically not authorized for use as critical components in life support devices or systems without the express written approval of the Chief Executive Officer of Diodes Incorporated. As used herein:

- A. Life support devices or systems are devices or systems which:
 - 1. are intended to implant into the body, or
 - 2. support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in significant injury to the user.
- B. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or to affect its safety or effectiveness.

Customers represent that they have all necessary expertise in the safety and regulatory ramifications of their life support devices or systems, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of Diodes Incorporated products in such safety-critical, life support devices or systems, notwithstanding any devices- or systems-related information or support that may be provided by Diodes Incorporated. Further, Customers must fully indemnify Diodes Incorporated and its representatives against any damages arising out of the use of Diodes Incorporated products in such safety-critical, life support devices or systems.

Copyright © 2013, Diodes Incorporated

www.diodes.com