mail

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832 Email & Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC06 September 1993

74HC/HCT139

FEATURES

- Demultiplexing capability
- Two independent 2-to-4 decoders
- Multifunction capability
- Active LOW mutually exclusive outputs
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT139 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). It is specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT139 are high-speed, dual 2-to-4 line decoder/multiplexers. This device has two independent decoders, each accepting two binary weighted inputs $(nA_0 \text{ and } nA_1)$ and providing four mutually exclusive active LOW outputs $(n\overline{Y}_0 \text{ to } n\overline{Y}3)$. Each decoder has an active LOW enable input $(n\overline{E})$.

When $n\overline{E}$ is HIGH, every output is forced HIGH. The enable can be used as the data input for a 1-to-4 demultiplexer application.

The "139" is identical to the HEF4556 of the HE4000B family.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 \circ C; t_r = t_f = 6 ns$

SVMBOI	DADAMETED	CONDITIONS	ТҮР			
STMBOL	PARAMETER	CONDITIONS	НС	нст	UNIT	
t _{PHL} / t _{PLH}	propagation delay	$C_{L} = 15 \text{ pF}; V_{CC} = 5 \text{ V}$				
	nA_n to $n\overline{Y}_n$		11	13	ns	
	$n\overline{E}_3$ to $n\overline{Y}_n$		10	13	ns	
CI	input capacitance		3.5	3.5	pF	
C _{PD}	power dissipation capacitance per multiplexer	notes 1 and 2	42	44	pF	

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_{D} = C_{PD} \times V_{CC}{}^{2} \times f_{i} + \Sigma \; (C_{L} \times V_{CC}{}^{2} \times f_{o})$ where:

 f_i = input frequency in MHz

 $f_o = output frequency in MHz$

 $\Sigma (C_L \times V_{CC}^2 \times f_o) = sum of outputs$

 C_1 = output load capacitance in pF

V_{CC} = supply voltage in V

2. For HC the condition is V_I = GND to V_{CC} For HCT the condition is V_I = GND to V_{CC} – 1.5 V

APPLICATIONS

- Memory decoding or data-routing
- Code conversion

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION	
1, 15	1Ē, 2Ē	enable inputs (active LOW)	
2, 3	1A ₀ , 1A ₁	address inputs	
4, 5, 6, 7	$1\overline{Y}_0$ to $1\overline{Y}_3$	outputs (active LOW)	
8	GND	ground (0 V)	
12, 11, 10, 9	$2\overline{Y}_0$ to $2\overline{Y}_3$	outputs (active LOW)	
14, 13	2A ₀ , 2A ₁	address inputs	
16	V _{CC}	positive supply voltage	

74HC/HCT139

74HC/HCT139

FUNCTION TABLE

	INPUTS		OUTPUTS						
nĒ	nA ₀	nA ₁	n <mark>₹</mark> 0	n <mark>₹</mark> 1	n₹2	n₹₃			
Н	Х	Х	Н	Н	Н	Н			
L	L	L	L	н	н	н			
L	н	L	н	L	Н	Н			
L	L	Н	н	Н	L	Н			
L	Н	Н	Н	н	н	L			

Notes

1. H = HIGH voltage level L = LOW voltage level

X = don't care

74HC/HCT139

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 \ V; \ t_r = t_f = 6 \ ns; \ C_L = 50 \ pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HC									WAVEEODMS
STMBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORM5	
		min.	typ.	max.	min.	max.	min.	max.		(.,	
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		39 14 11	145 29 25		180 36 31		220 44 38	ns	2.0 4.5 6.0	Fig.6
t _{PHL} / t _{PLH}	propagation delay $n\overline{E}$ to $n\overline{Y}_n$		33 12 10	135 27 23		170 34 29		205 41 35	ns	2.0 4.5 6.0	Fig.7
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Figs 6 and 7

74HC/HCT139

DC CHARACTERISTICS FOR HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD	COEFFICIENT
1A _n	0.70	
2A _n	0.70	
nĒ	1.35	

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \ V; \, t_f = t_f = 6 \ ns; \, C_L = 50 \ pF$

	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
SYMBOL		74HCT									WAVEEODME
		+25		-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.			
t _{PHL} / t _{PLH}	propagation delay nA_n to \overline{Y}_n		16	34		43		51	ns	4.5	Fig.6
t _{PHL} / t _{PLH}	propagation delay $n\overline{E}$ to $n\overline{Y}_n$		16	34		43		51	ns	4.5	Fig.7
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Figs 6 and 7

74HC/HCT139

AC WAVEFORMS

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".