

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT147 10-to-4 line priority encoder

Product specification
File under Integrated Circuits, IC06

December 1990

10-to-4 line priority encoder

74HC/HCT147

FEATURES

- Encodes 10-line decimal to 4-line BCD
- Useful for 10-position switch encoding
- · Used in code converters and generators
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT147 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT147 9-input priority encoders accept data from nine active LOW inputs $(\overline{A}_0$ to $\overline{A}_8)$ and provide a binary representation on the four active LOW outputs $(\overline{Y}_0$ to $\overline{Y}_3)$. A priority is assigned to each input so that when two or more inputs are simultaneously active, the input with the highest priority is represented on the output, with input line \overline{A}_8 having the highest priority.

The devices provide the 10-line to 4-line priority encoding function by use of the implied decimal "zero". The "zero" is encoded when all nine data inputs are HIGH, forcing all four outputs HIGH.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
SYMBOL	PARAMETER	CONDITIONS	нс	нст	UNII
t _{PHL} / t _{PLH}	propagation delay \overline{A}_n to \overline{Y}_n	C _L = 15 pF; V _{CC} = 5 V	15	17	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	30	33	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$$
 where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_1 \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

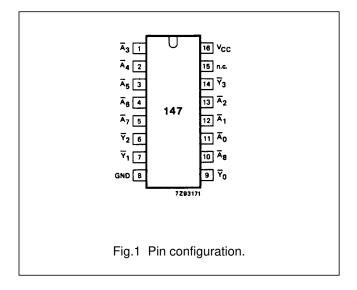
C_L = output load capacitance in pF

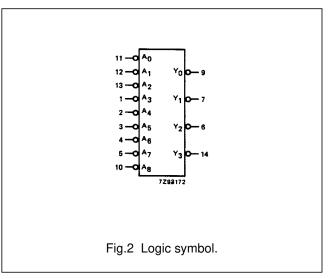
V_{CC} = supply voltage in V

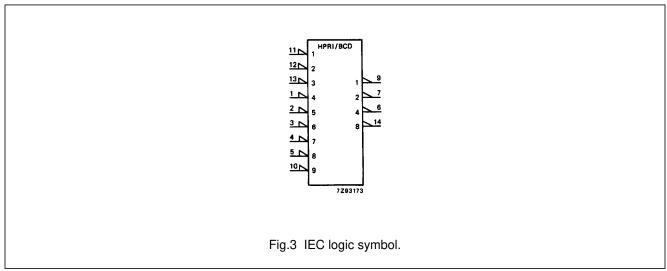
2. For HC the condition is $V_I = GND$ to V_{CC} For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5$ V

ORDERING INFORMATION

See "74HC/HCT/HCU/HCMOS Logic Package Information".

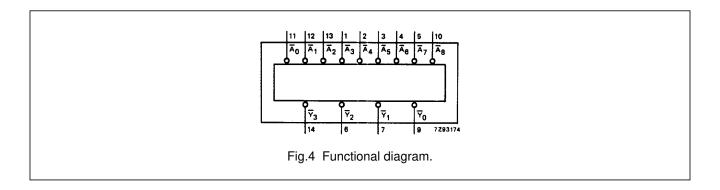

Philips Semiconductors Product specification


10-to-4 line priority encoder


74HC/HCT147

PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
8	GND	ground (0 V)
9, 7, 6, 14	\overline{Y}_0 to \overline{Y}_3	BCD address outputs (active LOW)
11, 12, 13, 1, 2, 3, 4, 5, 10	\overline{A}_0 to \overline{A}_8	decimal data inputs (active LOW)
15	n.c.	not connected
16	V _{CC}	positive supply voltage



Philips Semiconductors Product specification

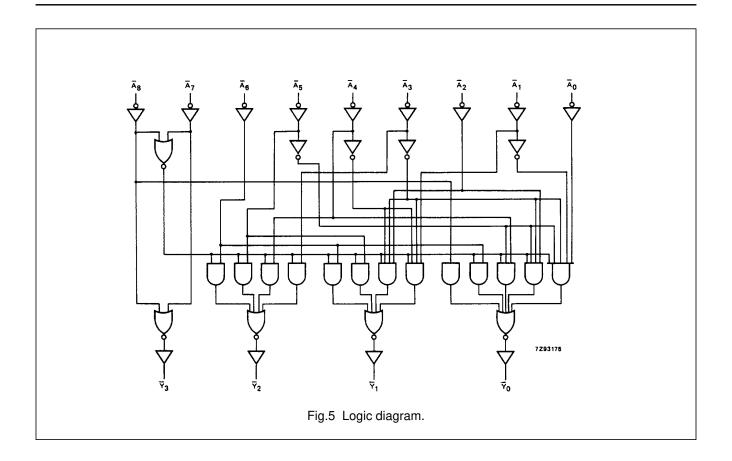
10-to-4 line priority encoder

74HC/HCT147

FUNCTION TABLE

	INPUTS									OUTI	PUTS	
\overline{A}_0	A ₁	\overline{A}_2	\overline{A}_3	\overline{A}_4	\overline{A}_{5}	\overline{A}_6	A ₇	A ₈	₹3	₹ ₂	₹ 1	\overline{Y}_0
Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н
X	X	X	X	X	X	Χ	X	L	L	Н	Η	L
Χ	Χ	X	X	Χ	X	Χ	L	Н	L	Н	Н	Н
X	Χ	X	X	Χ	X	L	Н	Н	Н	L	L	L
X	X	X	X	X	L	Н	Н	Н	Н	L	L	Н
X	Χ	X	Χ	L	Н	Н	Н	Н	Н	L	Н	L
Χ	X	X	L	Н	Н	Н	Н	Н	Н	L	Н	Н
X	X	L	Н	Н	Н	Н	Н	Н	Н	Н	L	L
X	L	Н	Н	Н	Н	Н	Н	Н	Н	Н	L	Н
L	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	Н	L

Notes


1. H = HIGH voltage level

L = LOW voltage level

X = don't care

10-to-4 line priority encoder

74HC/HCT147

Philips Semiconductors Product specification

10-to-4 line priority encoder

74HC/HCT147

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS	
		74HC									WAVEFORMS
		+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING
		min.	typ.	max.	min.	max.	min.	max.		(' '	
t _{PHL} / t _{PLH}	propagation delay \overline{A}_n to \overline{Y}_n		50 18 14	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 6		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6

10-to-4 line priority encoder

74HC/HCT147

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT
\overline{A}_3 , \overline{A}_4 , \overline{A}_7 , \overline{A}_8	1.50
\overline{A}_5 , \overline{A}_6 , \overline{A}_0 , \overline{A}_1 , \overline{A}_2	1.10

AC CHARACTERISTICS FOR 74HCT

 $GND = 0 \ V; t_r = t_f = 6 \ ns; C_L = 50 \ pF$

SYMBOL	PARAMETER	T _{amb} (°C)								TEST CONDITIONS		
		74HCT									WAVEFORMS	
		+25			−40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORING	
		min.	typ.	max.	min.	max.	min.	max.		(•)		
t _{PHL} / t _{PLH}			20	35		44		53	ns	4.5	Fig.6	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6	

AC WAVEFORMS

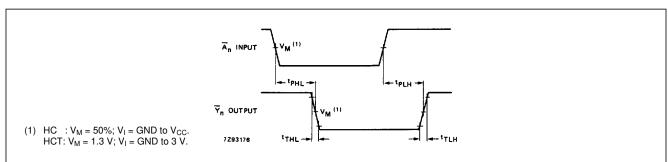


Fig.6 Waveforms showing the decimal data inputs (\overline{A}_n) to output (\overline{Y}_n) propagation delays and the output transition times.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".