## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

## 74HC193; 74HCT193

Presettable synchronous 4-bit binary up/down counter
Rev. 4 - 24 June 2013
Product data sheet

## 1. General description

The $74 \mathrm{HC} 193 ; 74 \mathrm{HCT} 193$ is a 4-bit synchronous binary up/down counter. Separate up/down clocks, CPU and CPD respectively, simplify operation. The outputs change state synchronously with the LOW-to-HIGH transition of either clock input. If the CPU clock is pulsed while CPD is held HIGH, the device will count up. If the CPD clock is pulsed while CPU is held HIGH, the device will count down. Only one clock input can be held HIGH at any time to guarantee predictable behaviour. The device can be cleared at any time by the asynchronous master reset input (MR); it may also be loaded in parallel by activating the asynchronous parallel load input ( $\overline{\mathrm{LL}})$. The terminal count up ( $\overline{\mathrm{TCU}}$ ) and terminal count down ( $\overline{T C D}$ ) outputs are normally HIGH. When the circuit has reached the maximum count state of 15 , the next HIGH-to-LOW transition of CPU will cause TCU to go LOW. $\overline{T C U}$ will stay LOW until CPU goes HIGH again, duplicating the count up clock. Likewise, the TCD output will go LOW when the circuit is in the zero state and the CPD goes LOW. The terminal count outputs can be used as the clock input signals to the next higher order circuit in a multistage counter, since they duplicate the clock waveforms. Multistage counters will not be fully synchronous, since there is a slight delay time difference added for each stage that is added. The counter may be preset by the asynchronous parallel load capability of the circuit. Information present on the parallel data inputs ( DO to D3) is loaded into the counter and appears on the outputs (Q0 to Q3) regardless of the conditions of the clock inputs when the parallel load ( $\overline{\mathrm{PL}}$ ) input is LOW. A HIGH level on the master reset (MR) input will disable the parallel load gates, override both clock inputs and set all outputs (Q0 to Q3) LOW. If one of the clock inputs is LOW during and after a reset or load operation, the next LOW-to-HIGH transition of that clock will be interpreted as a legitimate signal and will be counted. Inputs include clamp diodes. This enables the use of current limiting resistors to interface inputs to voltages in excess of $\mathrm{V}_{\mathrm{Cc}}$.

## 2. Features and benefits

- Input levels:
- For 74HC193: CMOS level
- For 74HCT193: TTL level
- Synchronous reversible 4-bit binary counting
- Asynchronous parallel load
- Asynchronous reset
- Expandable without external logic
- Complies with JEDEC standard no. 7A
- ESD protection:
- HBM JESD22-A114F exceeds 2000 V
- MM JESD22-A115-A exceeds 200 V .
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ and $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.


## 3. Ordering information

Table 1. Ordering information

| Type number | Package |  |  | Name |
| :--- | :--- | :--- | :--- | :--- |
|  | Temperature <br> range | Description | Version |  |
| 74 HC 193 D | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO16 | plastic small outline package; 16 leads; <br> body width 3.9 mm | SOT109-1 |
| 74 HC 193 DB | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SSOP16 | plastic shrink small outline package; 16 leads; <br> body width 5.3 mm | SOT338-1 |
| 74 HC 193 N | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | DIP16 | plastic dual in-line package; 16 leads $(300 \mathrm{mil})$ | SOT38-4 |
| 74 HC 193 PW | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TSSOP16 | plastic thin shrink small outline package; 16 leads; <br> body width 4.4 mm | SOT403-1 |
| 74 HCT 193 D | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO16 | plastic small outline package; 16 leads; <br> body width 3.9 mm | SOT109-1 |
| 74 HCT 193 DB | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SSOP16 | plastic shrink small outline package; 16 leads; <br> body width 5.3 mm | SOT338-1 |
| 74 HCT 193 N | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | DIP16 | plastic dual in-line package; 16 leads $(300$ mil) | SOT38-4 |
| $74 \mathrm{HCT} 193 P \mathrm{C}$ | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TSSOP16 | plastic thin shrink small outline package; 16 leads; <br> body width 4.4 mm | SOT403-1 |

## 4. Functional diagram



Fig 1. Functional diagram


Fig 2. Logic symbol


Fig 3. IEC logic symbol

$$
\overline{\mathrm{PL}}
$$

## 5. Pinning information

### 5.1 Pinning



### 5.2 Pin description

Table 2. Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| D0 | 15 | data input 0 |
| D1 | 1 | data input 1 |
| D2 | 10 | data input 2 |
| D3 | 9 | data input 3 |
| Q0 | 3 | flip-flop output 0 |
| Q1 | 2 | flip-flop output 1 |
| Q2 | 6 | flip-flop output 2 |
| Q3 | 7 | flip-flop output 3 |
| CPD | 4 | count down clock inputt[1] |
| CPU | 5 | count up clock input[1] |
| GND | 8 | ground (0 V) |
| $\overline{\text { PL }}$ | 11 | asynchronous parallel load input (active LOW) |
| $\overline{T C U}$ | 12 | terminal count up (carry) output (active LOW) |
| $\overline{T C D}$ | 13 | terminal count down (borrow) output (active LOW) |
| MR | 14 | asynchronous master reset input (active HIGH) |
| VCC | 16 | supply voltage |

[1] LOW-to-HIGH, edge triggered.

## 6. Functional description

Table 3. Function table[1]

| Operating mode | Inputs |  |  |  |  |  |  |  | Outputs |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | MR | PL | CPU | CPD | D0 | D1 | D2 | D3 | Q0 | Q1 | Q2 | Q3 | $\overline{T C U}$ | $\overline{T C D}$ |
| Reset (clear) | H | X | X | L | X | X | X | X | L | L | L | L | H | L |
|  | H | X | X | H | X | X | X | X | L | L | L | L | H | H |
| Parallel load | L | L | X | L | L | L | L | L | L | L | L | L | H | L |
|  | L | L | X | H | L | L | L | L | L | L | L | L | H | H |
|  | L | L | L | X | H | H | H | H | H | H | H | H | L | H |
|  | L | L | H | X | H | H | H | H | H | H | H | H | H | H |
| Count up | L | H | $\uparrow$ | H | X | X | X | X | count up |  |  |  | H[2] | H |
| Count down | L | H | H | $\uparrow$ | X | X | X | X | count down |  |  |  | H | H [3] |

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level
L = LOW voltage level
X = don't care
$\uparrow=$ LOW-to-HIGH clock transition.
[2] $\overline{\mathrm{TC}} \mathrm{C}=\mathrm{CPU}$ at terminal count up (HHHH)
[3] $\overline{\mathrm{TC}}=\mathrm{CPD}$ at terminal count down (LLLL).

(1) Clear overrides load, data and count inputs.
(2) When counting up, the count down clock input (CPD) must be HIGH, when counting down the count up clock input (CPU) must be HIGH

## Sequence

Clear (reset outputs to zero);
load (preset) to binary thirteen;
count up to fourteen, fifteen, terminal count up, zero, one and two;
count down to one, zero, terminal count down, fifteen, fourteen and thirteen.
Fig 8. Typical clear, load and count sequence

## 7. Limiting values

Table 4. Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Max | Unit |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | -0.5 | +7.0 | V |  |
| $\mathrm{I}_{\mathrm{IK}}$ | input clamping current | $\mathrm{V}_{1}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | $\underline{[1]}-$ | $\pm 20$ | mA |  |
| $\mathrm{I}_{\mathrm{OK}}$ | output clamping current | $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | $\underline{[1]}-$ | $\pm 20$ | mA |  |
| $\mathrm{I}_{\mathrm{O}}$ | output current | $\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | - | $\pm 25$ | mA |  |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current |  | - | 50 | mA |  |
| $\mathrm{I}_{\mathrm{GND}}$ | ground current | storage temperature |  | - | -50 | mA |
| $\mathrm{~T}_{\text {stg }}$ | total power dissipation | DIP16 package | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{P}_{\text {tot }}$ | SO16 package | $\underline{[2]}-$ | 750 | mW |  |  |
|  |  | SSOP16 package | $\underline{[2]}-$ | 500 | mW |  |
|  |  | TSSOP16 package | [2] - | 500 | mW |  |
|  |  | [2] - | 500 | mW |  |  |

[1] The input and output voltage ratings may be exceeded if the input and output current ratings are observed.
[2] For DIP16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly at $12 \mathrm{~mW} / \mathrm{K}$.
For SO16 packages: above $70^{\circ} \mathrm{C}$ the value of $\mathrm{P}_{\text {tot }}$ derates linearly at $8 \mathrm{~mW} / \mathrm{K}$.
For SSOP16 and TSSOP16 packages: above $60^{\circ} \mathrm{C}$ the value of $P_{\text {tot }}$ derates linearly at $5.5 \mathrm{~mW} / \mathrm{K}$.

## 8. Recommended operating conditions

Table 5. Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 74HC193 |  |  |  |  |  |  |
| $\mathrm{V}_{\text {CC }}$ | supply voltage |  | 2.0 | 5.0 | 6.0 | V |
|  | input voltage |  | 0 | - | $V_{\text {cc }}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage |  | 0 | - | $V_{C C}$ | V |
| $\mathrm{T}_{\text {amb }}$ | ambient temperature |  | -40 | +25 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | input transition rise and fall rate | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 625 | $\mathrm{ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 1.67 | 139 | $\mathrm{ns} / \mathrm{V}$ |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 83 | $\mathrm{ns} / \mathrm{V}$ |
| 74HCT193 |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | 4.5 | 5.0 | 5.5 | V |
| $V_{1}$ | input voltage |  | 0 | - | $\mathrm{V}_{\text {cc }}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage |  | 0 | - | $V_{C C}$ | V |
| $\mathrm{T}_{\text {amb }}$ | ambient temperature |  | -40 | +25 | +125 | ${ }^{\circ} \mathrm{C}$ |
| $\Delta \mathrm{t} / \Delta \mathrm{V}$ | input transition rise and fall rate | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 1.67 | 139 | $\mathrm{ns} / \mathrm{V}$ |

## 9. Static characteristics

Table 6. Static characteristics type 74HC193
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.5 | 1.2 | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 3.15 | 2.4 | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 4.2 | 3.2 | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 0.8 | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 2.1 | 1.35 | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | 2.8 | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ | - | - | - |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 1.9 | 2.0 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 4.4 | 4.5 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 5.9 | 6.0 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.98 | 4.32 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.48 | 5.81 | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0.15 | 0.26 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 0.16 | 0.26 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{I}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 8.0 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{\mathrm{i}}$ | input capacitance |  | - | 3.5 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| VIL | LOW-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 4.4 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.84 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.34 | - | - | V |

Table 6. Static characteristics type 74HC193 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.33 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.33 | V |
| 1 | input leakage current | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $l_{\text {cc }}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 80 | $\mu \mathrm{A}$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 4.4 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 5.9 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.7 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.2 | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\mathrm{IL}}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.4 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.4 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| ICC | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 160 | $\mu \mathrm{A}$ |

Table 7. Static characteristics type 74HCT193
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | 1.6 | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V | - | 1.2 | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | 4.5 | - | V |
|  |  | $\mathrm{l}=-4.0 \mathrm{~mA}$ | 3.98 | 4.32 | - | V |

Table 7. Static characteristics type 74HCT193 ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{l}=20 \mu \mathrm{~A}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}=4.0 \mathrm{~mA}$ | - | 0.15 | 0.26 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{C C}=5.5 \mathrm{~V}$ | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 8.0 | $\mu \mathrm{A}$ |
| $\Delta l_{\text {CC }}$ | additional supply current | per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ and other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V |  |  |  |  |
|  |  | pin Dn | - | 35 | 126 | $\mu \mathrm{A}$ |
|  |  | pins CPU, CPD | - | 140 | 504 | $\mu \mathrm{A}$ |
|  |  | pin $\overline{\mathrm{PL}}$ | - | 65 | 234 | $\mu \mathrm{A}$ |
|  |  | pin MR | - | 105 | 378 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{i}$ | input capacitance |  | - | 3.5 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | - | - | V |
|  |  | $\mathrm{l}=-4.0 \mathrm{~mA}$ | 3.84 | - | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=4.0 \mathrm{~mA}$ | - | - | 0.33 | V |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 80 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {CC }}$ | additional supply current | per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ and other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND ; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V |  |  |  |  |
|  |  | pin Dn | - | - | 157.5 | $\mu \mathrm{A}$ |
|  |  | pins CPU, CPD | - | - | 630 | $\mu \mathrm{A}$ |
|  |  | pin $\overline{\mathrm{PL}}$ | - | - | 292.5 | $\mu \mathrm{A}$ |
|  |  | pin MR | - | - | 472.5 | $\mu \mathrm{A}$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | 2.0 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ to 5.5 V | - | - | 0.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A}$ | 4.4 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4.0 \mathrm{~mA}$ | 3.7 | - | - | V |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{IH}}$ or $\mathrm{V}_{\mathrm{IL}} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4.0 \mathrm{~mA}$ | - | - | 0.4 | V |

Table 7. Static characteristics type 74HCT193 ...continued At recommended operating conditions; voltages are referenced to GND (ground = 0 V ).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | input leakage current | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| ICC | supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or GND; } \mathrm{I} \mathrm{O}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=5.5 \mathrm{~V} \end{aligned}$ | - | - | 160 | $\mu \mathrm{A}$ |
| $\Delta \mathrm{l}_{\text {CC }}$ | additional supply current | per input pin; $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}}-2.1 \mathrm{~V}$ and other inputs at $\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ to 5.5 V |  |  |  |  |
|  |  | pin Dn | - | - | 171.5 | $\mu \mathrm{A}$ |
|  |  | pins CPU, CPD | - | - | 686 | $\mu \mathrm{A}$ |
|  |  | pin $\overline{\mathrm{PL}}$ | - | - | 318.5 | $\mu \mathrm{A}$ |
|  |  | pin MR | - | - | 514.5 | $\mu \mathrm{A}$ |

## 10. Dynamic characteristics

Table 8. Dynamic characteristics type 74HC193

| Symbol | Parameter | Conditions |  | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+125{ }^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $t_{\text {pd }}$ | propagation delay | CPU, CPD to Qn; see Figure 9 | [1] | - |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ |  | - | 63 | 215 | - | 270 | - | 325 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 23 | 43 | - | 54 | - | 65 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ |  | - | 18 | 37 | - | 46 | - | 55 | ns |
|  |  | CPU to TCU; see Figure 10 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ |  | - | 39 | 125 | - | 155 | - | 190 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 14 | 25 | - | 31 | - | 38 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ |  | - | 11 | 21 | - | 26 | - | 32 | ns |
|  |  | CPD to $\overline{\text { TCD }}$; see Figure 10 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ |  | - | 39 | 125 | - | 155 | - | 190 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | - | 14 | 25 | - | 31 | - | 38 | ns |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ |  | - | 11 | 21 | - | 26 | - | 32 | ns |

$\overline{\mathrm{PL}}$ to Qn ; see
Figure 11

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 69 | 220 | - | 275 | - | 330 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 25 | 44 | - | 55 | - | 66 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 20 | 37 | - | 47 | - | 56 | ns |

MR to Qn; see
Figure 12

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 58 | 200 | - | 250 | - | 300 | ns |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :---: | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 21 | 40 | - | 50 | - | 60 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 17 | 34 |  | 43 | - | 51 | ns |

Dn to Qn; see
Figure 11

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 69 | 210 | - | 265 | - | 315 | ns |
| :--- | :--- | :--- | :--- | :--- | :---: | :--- | :---: | :---: |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 25 | 42 | - | 53 | - | 63 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 20 | 36 | - | 45 | - | 54 | ns |

$\overline{\mathrm{PL}}$ to $\overline{\mathrm{TCU}}, \overline{\mathrm{PL}}$ to
$\overline{T C D}$; see Figure 14

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 80 | 290 | - | 365 | - | 435 | ns |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 29 | 58 | - | 73 | - | 87 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 23 | 49 | - | 62 | - | 74 | ns |

$\frac{M R \text { to }}{\overline{T C U}}$, MR to

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 74 | 285 | - | 355 | - | 430 | ns |
| :--- | :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 27 | 57 | - | 71 | - | 86 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 22 | 48 | - | 60 | - | 73 | ns |

Table 8. Dynamic characteristics type 74HC193 ...continued

| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\mathrm{t}_{\mathrm{pd}}$ | propagation delay | Dn to $\overline{T C U}$, Dn to TCD; see Figure 14 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 80 | 290 | - | 365 | - | 435 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 29 | 58 | - | 73 | - | 87 | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | 23 | 49 | - | 62 | - | 74 | ns |
| $\mathrm{t}_{\text {THL }}$ | HIGH to LOW output transition time | see Figure 12 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | 19 | 75 | - | 95 | - | 110 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 7 | 15 | - | 19 | - | 22 | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | 6 | 13 | - | 16 | - | 19 | ns |
| $t_{\text {TLL }}$ | LOW to HIGH output transition time | see Figure 12 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | 19 | 75 | - | 95 | - | 110 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 7 | 15 | - | 19 | - | 22 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 6 | 13 | - | 16 | - | 19 | ns |
| tw | pulse width | CPU, CPD (HIGH or LOW); see Figure 9 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 100 | 22 | - | 125 | - | 150 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 20 | 8 | - | 25 | - | 30 | - | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 17 | 6 | - | 21 | - | 26 | - | ns |
|  |  | MR (HIGH); see Figure 12 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 100 | 25 | - | 125 | - | 150 | - | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 20 | 9 | - | 25 | - | 30 | - | ns |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | 17 | 7 | - | 21 | - | 26 | - | ns |
|  |  | $\overline{\mathrm{PL}}$ (LOW); see Figure 11 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 100 | 19 | - | 125 | - | 150 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 20 | 7 | - | 25 | - | 30 | - | ns |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | 17 | 6 | - | 21 | - | 26 | - | ns |
| $\mathrm{t}_{\text {rec }}$ | recovery time | $\overline{\text { PL }}$ to CPU, CPD; see Figure 11 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 50 | 8 | - | 65 | - | 75 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 10 | 3 | - | 13 | - | 15 | - | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 9 | 2 | - | 11 | - | 13 | - | ns |
|  |  | MR to CPU, CPD; see Figure 12 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 50 | 0 | - | 65 | - | 75 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 10 | 0 | - | 13 | - | 15 | - | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 9 | 0 | - | 11 | - | 13 | - | ns |

Table 8. Dynamic characteristics type 74HC193 ...continued

| Symbol | Parameter | Conditions | $25^{\circ} \mathrm{C}$ |  |  | $-40{ }^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $t_{\text {su }}$ | set-up time | Dn to $\overline{\mathrm{PL}}$; see Figure 13; note: $\overline{C P U}=\mathrm{CPD}=$ HIGH |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 80 | 22 | - | 100 | - | 120 | - | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 16 | 8 | - | 20 | - | 24 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 14 | 6 | - | 17 | - | 20 | - | ns |
| $t_{n}$ | hold time | Dn to $\overline{\text { PL; }}$ see Figure 13 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 0 | -14 | - | 0 | - | 0 | - | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 0 | -5 | - | 0 | - | 0 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 0 | -4 | - | 0 |  | 0 | - | ns |
|  |  | CPU to CPD, CPD to CPU; see Figure 15 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 80 | 22 | - | 100 | - | 120 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 16 | 8 | - | 20 | - | 24 | - | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 8 | 6 | - | 17 | - | 20 | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CPU, CPD; see Figure 9 |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 4.0 | 13.5 | - | 3.2 | - | 2.6 | - | MHz |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 20 | 41 | - | 16 | - | 13 | - | MHz |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | 24 | 49 | - | 19 | - | 15 | - | MHz |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\begin{aligned} & V_{1}=G N D \text { to } V_{C C} ; \\ & V_{C C}=5 \mathrm{~V} ; \\ & f_{i}=1 \mathrm{MHz} \end{aligned}$ | - | 24 | - | - | - | - | - | pF |

[1] $t_{p d}$ is the same as $t_{P H L}$ and $t_{\text {PLH }}$.
[2] $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(\mathrm{C}_{\mathrm{L}} \times \mathrm{V}_{\mathrm{CC}}{ }^{2} \times \mathrm{f}_{\mathrm{o}}\right)=$ sum of outputs.

Table 9. Dynamic characteristics type 74HCT193


Table 9. Dynamic characteristics type 74HCT193 ...continued

| Symbol | Parameter | Conditions |  | $25^{\circ} \mathrm{C}$ |  |  | $-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Min | Typ | Max | Min | Max | Min | Max |  |
| $\mathrm{t}_{\text {rec }}$ | recovery time | $\overline{\text { PL }}$ to CPU, CPD; see Figure 11 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ |  | 10 | 2 | - | 13 | - | 15 | - | ns |
|  |  | MR to CPU, CPD; see Figure 12 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | 10 | 0 | - | 13 | - | 15 | - | ns |
| $\mathrm{t}_{\text {su }}$ | set-up time | Dn to $\overline{\mathrm{PL}}$; see Figure 13; note: $\mathrm{CPU}=\mathrm{CPD}=$ HIGH |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | 16 | 8 | - | 20 | - | 24 | - | ns |
| $t_{n}$ | hold time | Dn to $\overline{\mathrm{PL}}$; see Figure 13 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | 0 | -6 | - | 0 | - | 0 | - | ns |
|  |  | CPU to CPD, CPD to CPU; see Figure 15 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ |  | 16 | 7 | - | 20 | - | 24 | - | ns |
| $\mathrm{f}_{\text {max }}$ | maximum frequency | CPU, CPD; see Figure 9 |  |  |  |  |  |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ |  | 20 | 43 | - | 16 | - | 13 | - | MHz |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\begin{aligned} & \mathrm{V}_{1}=\mathrm{GND} \text { to } \mathrm{V}_{\mathrm{CC}} \\ & 1.5 \mathrm{~V} ; \mathrm{V}_{\mathrm{CC}}=5 \mathrm{~V} ; \\ & \mathrm{f}_{\mathrm{i}}=1 \mathrm{MHz} \end{aligned}$ |  | - | 26 | - | - | - | - | - | pF |

[1] $t_{p d}$ is the same as $t_{P H L}$ and $t_{\text {PLH }}$.
[2] $\mathrm{C}_{\text {PD }}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ):
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}^{2} \times f_{0}\right)=$ sum of outputs.

## 11. Waveforms



Measurement points are given in Table 10
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {pd }}$
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 9. The clock (CPU, CPD) to output (Qn) propagation delays, the clock pulse width, and the maximum clock pulse frequency


Measurement points are given in Table 10.
$t_{P L H}$ and $t_{P H L}$ are the same as $t_{p d}$
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 10. The clock (CPU, CPD) to terminal count output ( $\overline{\mathrm{TCU}}, \overline{\mathrm{TCD}}$ ) propagation delays


Measurement points are given in Table 10
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{p d}$
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 11. The parallel load input ( $\overline{\mathrm{PL}}$ ) and data ( Dn ) to Qn output propagation delays and $\overline{\mathrm{PL}}$ removal time to clock input (CPU, CPD)


Measurement points are given in Table 10.
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{p d}$
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 12. The master reset input (MR) pulse width, MR to Qn propagation delays, MR to CPU, CPD removal time and output transition times


The shaded areas indicate when the input is permitted to change for predictable output performance.
Measurement points are given in Table 10.
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 13. The data input (Dn) to parallel load input ( $\overline{\mathrm{PL}}$ ) set-up and hold times


Measurement points are given in Table 10
$t_{\text {PLH }}$ and $t_{\text {PHL }}$ are the same as $t_{\text {pd }}$
Logic levels $\mathrm{V}_{\mathrm{OL}}$ and $\mathrm{V}_{\mathrm{OH}}$ are typical output voltage levels that occur with the output load.
Fig 14. The data input (Dn), parallel load input ( $\overline{\mathrm{PL}}$ ) and the master reset input (MR) to the terminal count outputs (TCU, TCD) propagation delays


Measurement points are given in Table 10.
Fig 15. The CPU to CPD or CPD to CPU hold times

Table 10. Measurement points

| Type | Input |  | Output |
| :--- | :--- | :--- | :--- |
|  | $\mathbf{V}_{\mathbf{M}}$ | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{V}_{\mathbf{M}}$ |
| $74 \mathrm{HC193}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ | GND to $\mathrm{V}_{\mathrm{CC}}$ | $0.5 \times \mathrm{V}_{\mathrm{CC}}$ |
| 74 HCT193 | 1.3 V | GND to 3 V | 1.3 V |



Test data is given in Table 11
Definitions test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance $Z_{o}$ of the pulse generator
$C_{L}=$ Load capacitance including jig and probe capacitance
$\mathrm{R}_{\mathrm{L}}=$ Load resistor
S1 = Test selection switch
Fig 16. Load circuitry for measuring switching times

Table 11. Test data

| Type | Input | Load |  | S1 position |  |
| :--- | :--- | :--- | :--- | :--- | :--- |
|  | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$ | $\mathbf{C}_{\mathrm{L}}$ | $\mathbf{R}_{\mathbf{L}}$ | $\mathbf{t}_{\text {PHL }}, \mathbf{t}_{\text {PLH }}$ |
| 74 HC 193 | $\mathrm{~V}_{\mathrm{CC}}$ | 6 ns | $15 \mathrm{pF}, 50 \mathrm{pF}$ | $1 \mathrm{k} \Omega$ | open |
| 74 HCT 193 | 3 V | 6 ns | $15 \mathrm{pF}, 50 \mathrm{pF}$ | $1 \mathrm{k} \Omega$ | open |

## 12. Application information



Fig 17. Application for cascaded up/down counter with parallel load

## 13. Package outline



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathbf{A}_{2}$ | $A_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | C | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.75 | $\begin{aligned} & 0.25 \\ & 0.10 \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$ | $\begin{gathered} 10.0 \\ 9.8 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$ | 1.27 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.05 | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.7 \\ & 0.3 \end{aligned}$ | $8^{\circ}$ |
| inches | 0.069 | $\begin{aligned} & 0.010 \\ & 0.004 \end{aligned}$ | $\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\left.\begin{aligned} & 0.0100 \\ & 0.0075 \end{aligned} \right\rvert\,$ | $\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$ | 0.05 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$ | $0^{\circ}$ |

Note

1. Plastic or metal protrusions of 0.15 mm ( 0.006 inch ) maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEANPROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT109-1 | 076E07 | MS-012 |  | $\square$ | $\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$ |

Fig 18. Package outline SOT109-1 (SO16)
DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m a x}$. |  | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}}$

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  | $-99-12-27$ <br> $03-02-19$ |

Fig 19. Package outline SOT338-1 (SSOP16)


DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A max. | $A_{1}$ min. | $\begin{gathered} \mathbf{A}_{2} \\ \max . \end{gathered}$ | b | $\mathrm{b}_{1}$ | $\mathrm{b}_{2}$ | C | $D^{(1)}$ | $E^{(1)}$ | e | $e_{1}$ | L | $\mathrm{M}_{\mathrm{E}}$ | $\mathbf{M}_{\mathbf{H}}$ | w | $\begin{aligned} & Z^{(1)} \\ & \max . \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 4.2 | 0.51 | 3.2 | $\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$ | $\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$ | 2.54 | 7.62 | $\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$ | $\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.3 \end{gathered}$ | 0.254 | 0.76 |
| inches | 0.17 | 0.02 | 0.13 | $\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$ | $\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$ | $\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$ | 0.1 | 0.3 | $\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$ | 0.01 | 0.03 |

Note

1. Plastic or metal protrusions of 0.25 mm ( 0.01 inch ) maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT38-4 |  |  |  | $\square$ ¢ | $\begin{aligned} & \hline-95-01-14 \\ & 03-02-13 \end{aligned}$ |

Fig 20. Package outline SOT38-4 (DIP16)

