

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Important notice

Dear Customer,

On 7 February 2017 the former NXP Standard Product business became a new company with the tradename **Nexperia**. Nexperia is an industry leading supplier of Discrete, Logic and PowerMOS semiconductors with its focus on the automotive, industrial, computing, consumer and wearable application markets

In data sheets and application notes which still contain NXP or Philips Semiconductors references, use the references to Nexperia, as shown below.

Instead of http://www.nxp.com, http://www.nxp.com, http://www.nexperia.com, http://www.nexperia.com)

Instead of sales.addresses@www.nxp.com or sales.addresses@www.semiconductors.philips.com, use salesaddresses@nexperia.com (email)

Replace the copyright notice at the bottom of each page or elsewhere in the document, depending on the version, as shown below:

- © NXP N.V. (year). All rights reserved or © Koninklijke Philips Electronics N.V. (year). All rights reserved

Should be replaced with:

- © Nexperia B.V. (year). All rights reserved.

If you have any questions related to the data sheet, please contact our nearest sales office via e-mail or telephone (details via **salesaddresses@nexperia.com**). Thank you for your cooperation and understanding,

Kind regards,

Team Nexperia

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT221

Dual non-retriggerable monostable multivibrator with reset

Product specification Supersedes data of April 1988 File under Integrated Circuits, IC06 December 1990

74HC/HCT221

FEATURES

- Pulse width variance is typically less than $\pm 5\%$
- Pin-out identical to "123"
- · Overriding reset terminates output pulse
- nB inputs have hysteresis for improved noise immunity
- Output capability: standard (except for nR_{EXT}/C_{EXT})
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT221 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT221 are dual non-retriggerable monostable multivibrators. Each multivibrator features an active LOW-going edge input ($n\overline{A}$) and an active HIGH-going edge input (nB), either of which can be used as an enable input.

Pulse triggering occurs at a particular voltage level and is not directly related to the transition time of the input pulse. Schmitt-trigger input circuitry for the nB inputs allow jitter-free triggering from inputs with slow transition rates, providing the circuit with excellent noise immunity.

Once triggered, the outputs $(nQ, n\overline{Q})$ are independent of further transitions of $n\overline{A}$ and nB inputs and are a function of the timing components. The output pulses can be terminated by the overriding active LOW reset inputs $(n\overline{R}_D)$. Input pulses may be of any duration relative to the output pulse.

Pulse width stability is achieved through internal compensation and is virtually independent of V_{CC} and temperature. In most applications pulse stability will only be limited by the accuracy of the external timing components.

The output pulse width is defined by the following relationship:

$$t_W = C_{EXT}R_{EXT}In_2$$

$$t_W = 0.7C_{EXT}R_{EXT}$$

Pin assignments for the "221" are identical to those of the "123" so that the "221" can be substituted for those products in systems not using the retrigger by merely changing the value of R_{EXT} and/or C_{EXT} .

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STIMBUL	PARAMETER	CONDITIONS	нс	нст	UNIT
	propagation delay	$C_L = 15 \text{ pF}; V_{CC} = 5 \text{ V};$			
t _{PHL}	$n\overline{A}$, nB , $n\overline{R}_D$ to nQ , $n\overline{Q}$	$R_{EXT} = 5 \text{ k}\Omega; C_{EXT} = 0 \text{ pF}$	29	32	ns
t _{PLH}	$n\overline{A}$, nB , $n\overline{R}_D$ to nQ , $n\overline{Q}$		35	36	ns
Cı	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per package	notes 1 and 2	90	96	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

$$P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o) + 0.33 \times C_{EXT} \times V_{CC}^2 \times f_o + D \times 28 \times V_{CC} \text{ where:}$$

f_i = input frequency in MHz; f_o = output frequency in MHz

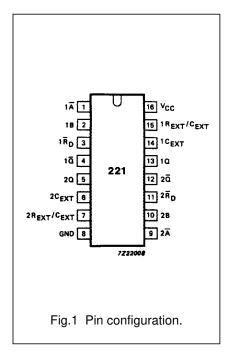
$$\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$$

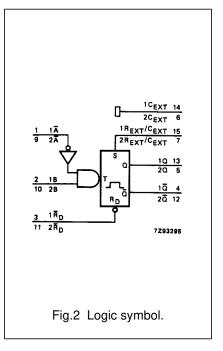
C_{EXT} = timing capacitance in pF; C_L = output load capacitance in pF

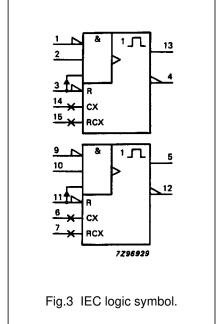
V_{CC} = supply voltage in V; D = duty factor in %

2. For HC the condition is $V_I = GND$ to V_{CC}

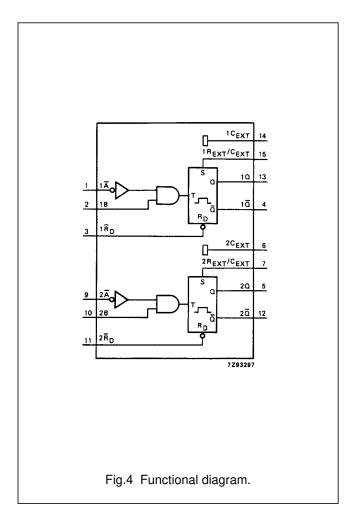
For HCT the condition is V_I = GND to V_{CC} – 1.5 V


74HC/HCT221


ORDERING INFORMATION


See "74HC/HCT/HCU/HCMOS Logic Package Information".

PIN DESCRIPTION


PIN NO.	SYMBOL	NAME AND FUNCTION
1, 9	1Ā, 2Ā	trigger inputs (negative-edge triggered)
2, 10	1B, 2B	trigger inputs (positive-edge triggered)
3, 11	$1\overline{R}_D$, $2\overline{R}_D$	direct reset inputs (active LOW)
4, 12	1\overline{Q}, 2\overline{Q}	outputs (active LOW)
7	2R _{EXT} /C _{EXT}	external resistor/capacitor connection
8	GND	ground (0 V)
13, 5	1Q, 2Q	outputs (active HIGH)
14, 6	1C _{EXT} , 2C _{EXT}	external capacitor connection
15	1R _{EXT} /C _{EXT}	external resistor/capacitor connection
16	V _{CC}	positive supply voltage

74HC/HCT221

FUNCTION TABLE

	INPUTS	OUTPUTS				
nR̄ _D	nĀ	nB	nQ	nQ		
L	Х	Х	L	Н		
Х	Н	Х	L (2)	H ⁽²⁾		
Х	X	L	L (2)	H ⁽²⁾		
Н	L	1	工	1√		
Н	↓	Н	几	7		
↑	L	Н	(3)	(3)		

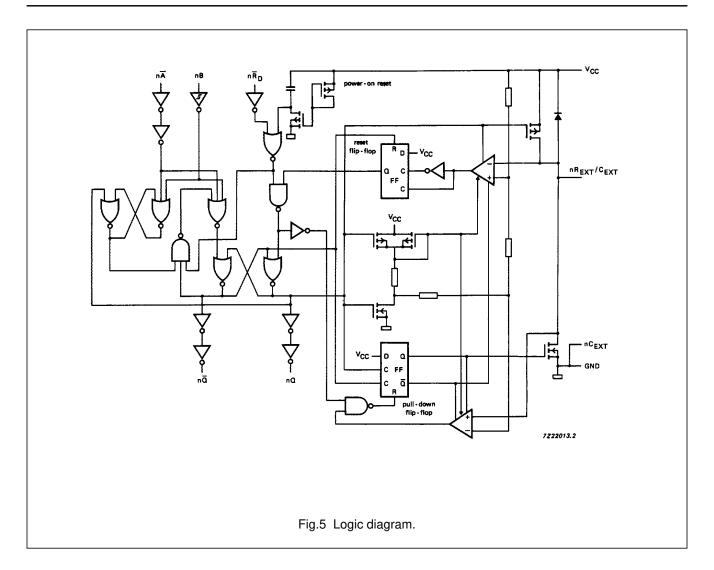
Notes

1. H = HIGH voltage level

L = LOW voltage level

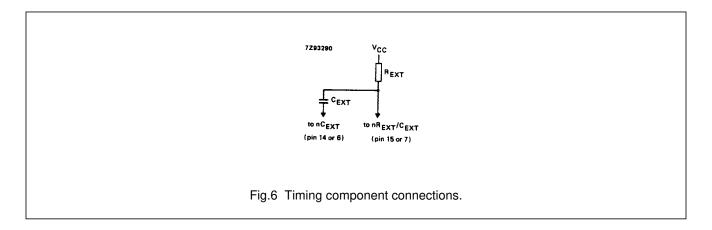
X = don't care

↑ = LOW-to-HIGH level


↓ = HIGH-to-LOW level

— □ = one HIGH-level output pulse

= one LOW-level output pulse


- 2. If the monostable was triggered before this condition was established the pulse will continue as programmed.
- 3. For this combination the reset input must be LOW and the following sequence must be used: pin 1 (or 9) must be set HIGH or pin 2 (or 10) set LOW; then pin 1 (or 9) must be LOW and pin 2 (or 10) set HIGH. Now the reset input goes from LOW-to-HIGH and the device will be triggered.

74HC/HCT221

Note

It is recommended to ground pins 6 ($2C_{EXT}$) and 14 ($1C_{EXT}$) externally to pin 8 (GND).

Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard (except for nR_{EXT}/C_{EXT})

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

				•	T _{amb} (TES	TEST CONDITIONS			
OVMOOL	DADAMETED			74H	l <u>.</u>		WAVEFORMO				
SYMBOL	PARAMETER	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min	typ	max.	min	max.	min.	max.		(',	
t _{PLH}	propagation delay (trigger) nA, nB to nQ		72 26 21	220 44 37		275 55 47		330 66 56	ns	2.0 4.5 6.0	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.10
t _{PLH}	propagation delay (trigger) nR _D to nQ		80 29 23	245 49 42		305 61 52		370 74 63	ns	2.0 4.5 6.0	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10
t _{PHL}	propagation delay (trigger) nĀ, nB to nQ		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.10
t _{PHL}	propagation delay (trigger) $n\overline{R}_D$ to $n\overline{Q}$		63 23 18	195 39 33		245 49 42		295 59 50	ns	2.0 4.5 6,0	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.10
t _{PLH}	propagation delay (reset) $n\overline{R}_D$ to $n\overline{Q}$		66 24 19	200 40 34		250 50 43		300 60 51	ns	2.0 4.5 6.0	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.11
t _{PLH}	propagation delay (reset) nR _D to nQ		58 21 17	180 36 31		225 45 38		270 54 46	ns	2.0 4.5 6.0	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.11
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.10
t _W	trigger pulse width nA = LOW	75 15 13	25 9 7		95 19 16		110 22 19		ns	2.0 4.5 6.0	Fig.7
t _W	trigger pulse width nB = HIGH	90 18 15	30 11 9		115 23 20		135 27 23		ns	2.0 4.5 6.0	Fig.7
t _W	trigger pulse width nR _D = LOW	75 15 13	25 9 7		95 19 16		110 22 19		ns	2.0 4.5 6.0	Fig.8
t _W	output pulse width nQ = LOW nQ = HIGH	630	700	770	602	798	595	805	μs	5.0	C_{EXT} = 100 nF; R_{EXT} = 10 k Ω ; Fig.10

Dual non-retriggerable monostable multivibrator with reset

	PARAMETER			•	T _{amb} (TEST CONDITIONS				
SYMBOL					74H	UNIT		WAVEFORMS			
STIMBOL	PANAMETEN	+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS
		min	typ	max.	min	max.	min.	max.		(1)	
t _W	output pulse width nQ or nQ		140		_		_		ns	2.0 4.5 6.0	C_{EXT} = 28 nF; R_{EXT} = 2 k Ω ; Fig.10
t _W	output pulse width nQ or nQ		1.5		_		_		μs	2.0 4.5 6.0	$\begin{aligned} &C_{EXT} = 1 \text{ nF}; \\ &R_{EXT} = 2 \text{ k}\Omega; \\ &\text{Fig.} 10 \end{aligned}$
t _W	output pulse width nQ or nQ		7		_		_		μs	2.0 4.5 6.0	C_{EXT} = 1 nF; R_{EXT} = 10 k Ω ; Fig.10
t _W	pulse width match between circuits in the package		±2		_		_		%	4.5 to 5.5	$C_{EXT} = 1000 \text{ pF};$ $R_{EXT} = 10 \text{ k}\Omega$
t _{rem}	removal time nRD to nA or nB	100 20 17	30 11 9		125 25 21		150 30 26		ns	2.0 4.5 6.0	Fig.9
R _{EXT}	external timing resistor	10 2		1000 1000	_		_ _		kΩ	2.0 5.0	Fig.12 Fig.13
C _{EXT}	external timing capacitor	no lin	nits						pF	2.0 5.0	Fig.12 Fig.13

Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard (except for nR_{EXT}/C_{EXT})

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

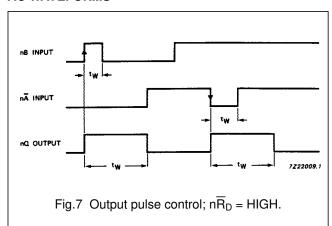
INPUT	UNIT LOAD COEFFICIENT
nB	0.30
nĀ	0.50
$n\overline{R}_D$	0.50

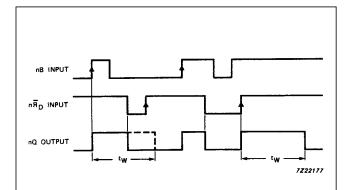
Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

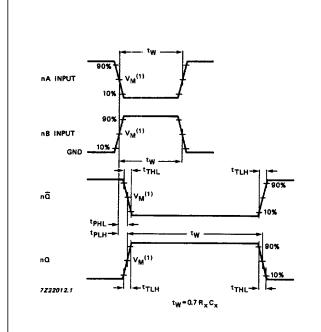
AC CHARACTERISTICS FOR 74HCT

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

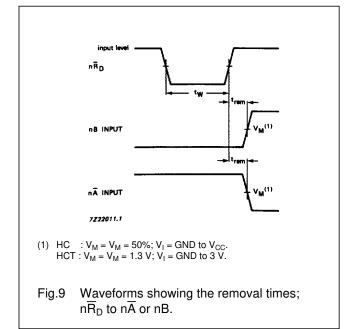

					T _{amb}	(°C)				TEST CONDITIONS		
	PARAMETER	74HCT										
SYMBOL		+25		-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS		
		min	typ	max	min	max.	min.	max.		(*)		
t _{PLH}	propagation delay (trigger) nĀ, nR̄ _D to nQ		30	50		63		75	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PLH}	propagation delay (trigger) nB to nQ		24	42		53		63	ns	4.5	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.10	
t _{PHL}	propagation delay (trigger) nA to nQ		26	44		55		66	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (trigger) nB to nQ		21	35		44		53	ns	4.5	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.10	
t _{PHL}	propagation delay (trigger) nRD to nQ		26	43		54		65	ns	4.5	$C_{EXT} = 0 \text{ pF};$ $R_{EXT} = 5 \text{ k}\Omega;$ Fig.10	
t _{PHL}	propagation delay (reset) nRD to nQ		26	43		54		65	ns	4.5	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.11	
t _{PLH}	$\begin{array}{c} \text{propagation delay (reset)} \\ \text{n\overline{R}_D to n\overline{Q}} \end{array}$		31	51		64		77	ns	4.5	C_{EXT} = 0 pF; R_{EXT} = 5 k Ω ; Fig.11	
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.10	
t _W	trigger pulse width nA = LOW	20	13		25		30		ns	4.5	Fig.10	
t _W	trigger pulse width nB = HIGH	20	13		25		30		ns	4.5	Fig.10	
t _W	pulse width nRD = LOW	22	13		28		33		ns	4.5	Fig.8	
t _W	output pulse width nQ = LOW nQ = HIGH	630	700	770	602	798	595	805	μs	5.0	C_{EXT} = 100 nF; R_{EXT} = 10 k Ω ; Fig.10	
t _W	trigger pulse width nQ or nQ		140		_		_		ns	4.5	C_{EXT} = 28 pF; R_{EXT} = 2 k Ω ; Fig.10	
t _W	trigger pulse width nQ or nQ		1.5		_		_		μs	4.5	C_{EXT} = 1 nF; R_{EXT} = 2 k Ω ; Fig.10	

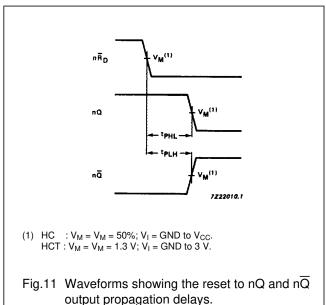

Dual non-retriggerable monostable multivibrator with reset

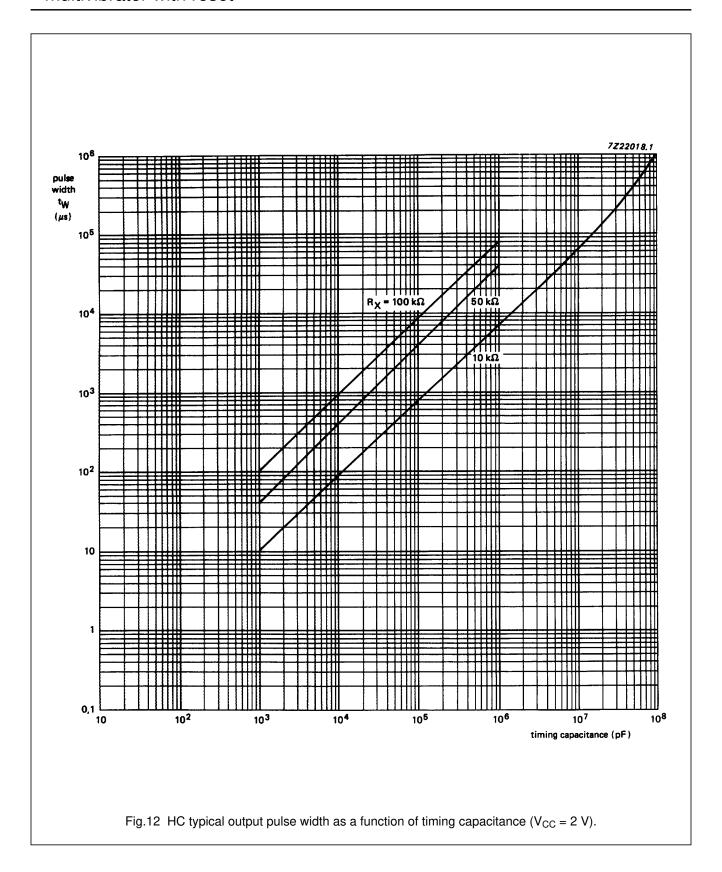
	PARAMETER		T _{amb} (°C) 74HCT								TEST CONDITIONS		
SYMBOL											WAVEFORMS		
STIMBUL		+25			-40 to +85		-40 to +125		UNIT	V _{CC}	WAVEFORMS		
		min	typ	max	min	max.	min.	max.		``'			
tw	trigger pulse width nQ or nQ		7		_		_		μs	4.5	C_{EXT} = 1 nF; R_{EXT} = 10 k Ω ; Fig.10		
t _{rem}	removal time nRD to nA or nB	20	12		25		30		ns	4.5	Fig.9		
R _{EXT}	external timing resistor	2		1000	-		_		kΩ	5.0	Fig.13		
C _{EXT}	external timing capacitor	no lin	nits	•	•	•		•	pF	5.0	Fig.13		

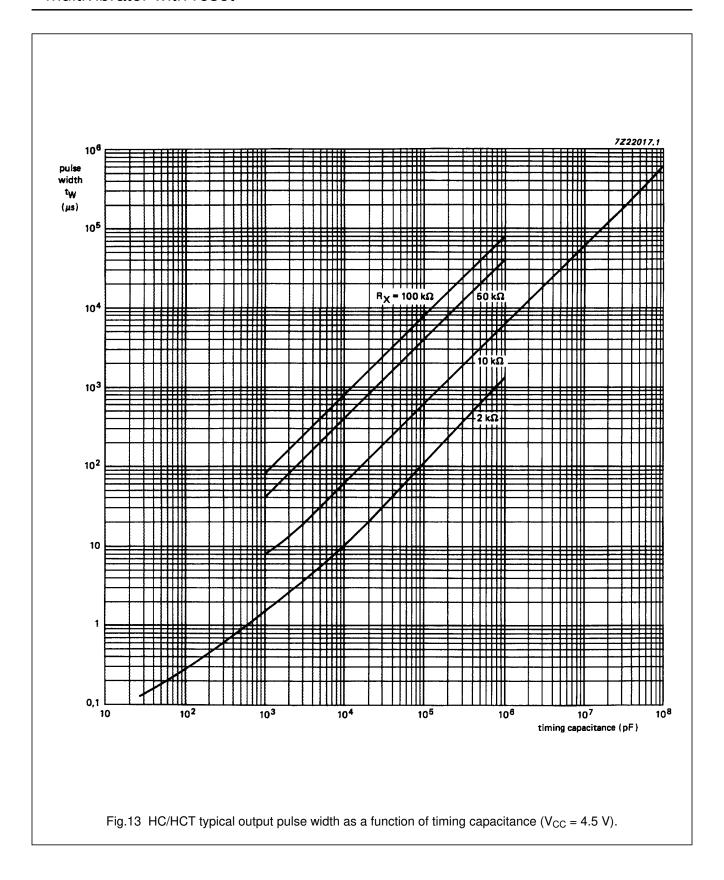

74HC/HCT221

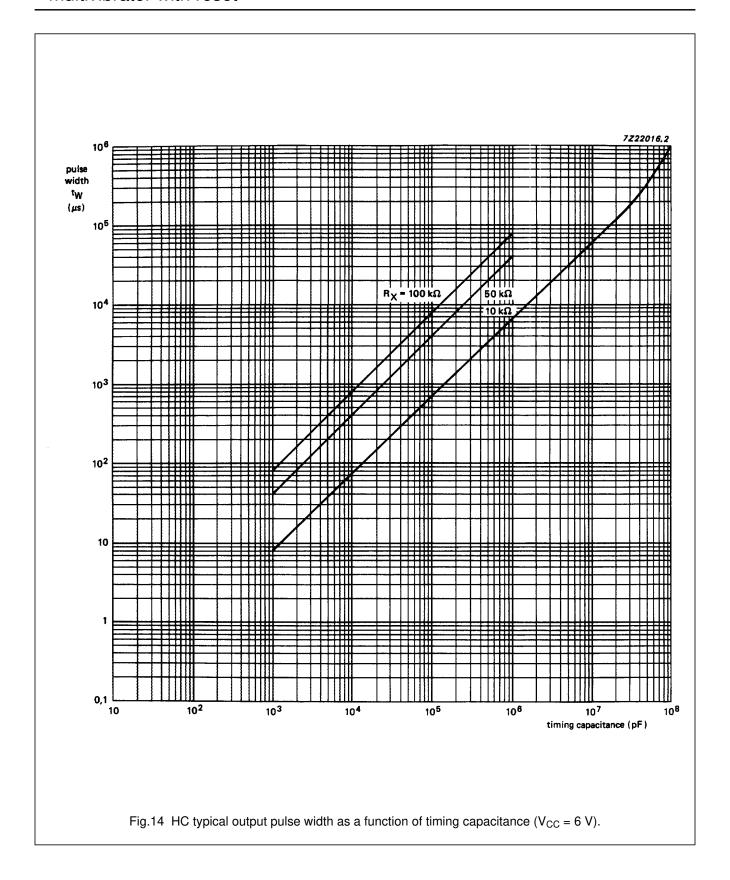
AC WAVEFORMS




Output pulse control using reset input $n\overline{R}_D$; $n\overline{A} = LOW$.




 $\begin{array}{ll} \text{(1)} & \text{HC} & : V_M = V_M = 50\%; \ V_I = GND \ to \ V_{CC}. \\ & \text{HCT} : V_M = V_M = 1.3 \ V; \ V_I = GND \ to \ 3 \ V. \end{array}$


Fig.10 Waveforms showing the triggering of One Shot by input $n\overline{A}$ or input nB for one period (t_W) and minimum pulse widths of the trigger inputs $n\overline{A}$ and nB.

Dual non-retriggerable monostable multivibrator with reset

74HC/HCT221

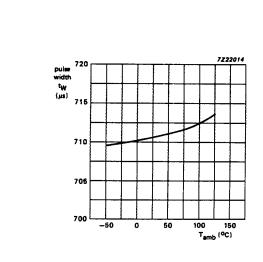


Fig.15 Typical output pulse width as a function of temperature; C_X = 0.1 μF ; R_X = 10 $K\Omega$; V_{CC} = 5 V.

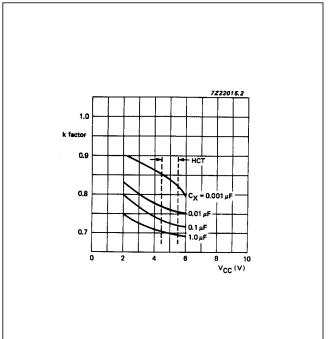
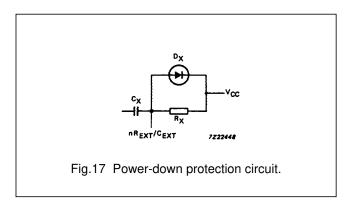



Fig.16 k factor as a function of supply voltage; $R_X = 10 \text{ K}\Omega; T_{amb} = 25 \,^{\circ}\text{C}.$

Power-down consideration

A large capacitor (C_X) may cause problems when powering-down the monostable due to the energy stored in this capacitor. When a system containing this device is powered-down or a rapid decrease of V_{CC} to zero occurs, the monostable may substain damage, due to the capacitor discharging through the input protection diodes. To avoid this possibility, use a damping diode (D_X) preferably a germanium or Schottky type diode able to withstand large current surges and connect as shown in Fig.17.

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".