## : ©hipsmall

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from,Europe,America and south Asia,supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts,Customers Priority,Honest Operation, and Considerate Service",our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip,ALPS,ROHM,Xilinx,Pulse,ON,Everlight and Freescale. Main products comprise IC,Modules,Potentiometer,IC Socket,Relay,Connector.Our parts cover such applications as commercial,industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!


## Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832
Email \& Skype: info@chipsmall.com Web: www.chipsmall.com Address: A1208, Overseas Decoration Building, \#122 Zhenhua RD., Futian, Shenzhen, China

Rev. 03 - 11 November 2004
Product data sheet

## 1. General description

The 74 HC 283 is a high-speed Si -gate CMOS device and is pin compatible with low power Schottky TTL (LSTTL). The 74HC283 is specified in compliance with JEDEC standard no. 7A.

The 74 HC 283 adds two 4-bit binary words (An plus Bn ) plus the incoming carry (CIN). The binary sum appears on the sum outputs (S1 to S4) and the out-going carry (COUT) according to the equation:
$\mathrm{CIN}+(\mathrm{A} 1+\mathrm{B} 1)+2(\mathrm{~A} 2+\mathrm{B} 2)+4(\mathrm{~A} 3+\mathrm{B} 3)+8(\mathrm{~A} 4+\mathrm{B} 4)=$ $=S 1+2 S 2+4 S 3+8 S 4+16 C O U T$

Where (+) = plus.
Due to the symmetry of the binary add function, the 74 HC 283 can be used with either all active HIGH operands (positive logic) or all active LOW operands (negative logic). In case of all active LOW operands the results S 1 to S 4 and COUT should be interpreted also as active LOW. With active HIGH inputs, CIN must be held LOW when no carry in is intended. Interchanging inputs of equal weight does not affect the operation, thus CIN, A1, B1 can be assigned arbitrarily to pins 5, 6, 7, etc.

See the 74 HC 583 for the BCD version.

## 2. Features

- High-speed 4-bit binary addition
- Cascadable in 4-bit increments
- Fast internal look-ahead carry
- Low-power dissipation
- Complies with JEDEC standard no. 7A
- ESD protection:
- HBM EIA/JESD22-A114-B exceeds 2000 V
- MM EIA/JESD22-A115-A exceeds 200 V.
- Multiple package options
- Specified from $-40^{\circ} \mathrm{C}$ to $+80^{\circ} \mathrm{C}$ and from $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$.


## 3. Quick reference data

Table 1: Quick reference data
$G N D=0 \mathrm{~V} ; T_{\text {amb }}=25^{\circ} \mathrm{C} ; t_{r}=t_{f}=6 \mathrm{~ns}$.

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay | $\mathrm{C}_{\mathrm{L}}=15 \mathrm{pF} ; \mathrm{V}_{\mathrm{CC}}$ |  |  |  |  |
|  | CIN to S1 |  | - | 16 | - | ns |
|  | CIN to S2 |  | - | 18 | - | ns |
|  | CIN to S3 |  | - | 20 | - | ns |
|  | CIN to S4 |  | - | 23 | - | ns |
|  | An or Bn to Sn |  | - | 21 | - | ns |
|  | CIN to COUT |  | - | 20 | - | ns |
|  | An or Bn to COUT |  | - | 20 | - | ns |
| $\mathrm{C}_{1}$ | input capacitance |  | - | 3.5 | - | pF |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$ | [1] - | 88 | - | pF |

[1] $\mathrm{C}_{P D}$ is used to determine the dynamic power dissipation ( $\mathrm{P}_{\mathrm{D}}$ in $\mu \mathrm{W}$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{0}=$ output frequency in MHz;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)=$ sum of outputs.

## 4. Ordering information

Table 2: Ordering information

| Type number | Package |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Temperature range | Name | Description | Version |
| 74HC283N | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | DIP16 | plastic dual in-line package; 16 leads (300 mil) | SOT38-4 |
| 74HC283D | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SO16 | plastic small outline package; 16 leads; body width 3.9 mm | SOT109-1 |
| 74HC283DB | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | SSOP16 | plastic shrink small outline package; 16 leads; body width 5.3 mm | SOT338-1 |
| 74HC283PW | $-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ | TSSOP16 | plastic thin shrink small outline package; 16 leads; body width 4.4 mm | SOT403-1 |

## 5. Functional diagram



Fig 1. Functional diagram


Fig 2. Logic symbol


Fig 3. IEC logic symbol


Fig 4. Logic diagram
6. Pinning information

### 6.1 Pinning



Fig 5. Pin configuration

### 6.2 Pin description

Table 3: Pin description

| Symbol | Pin | Description |
| :--- | :--- | :--- |
| S2 | 1 | sum output 2 |
| B2 | 2 | B operand input 2 |
| A2 | 3 | A operand input 2 |
| S1 | 4 | sum output 1 |
| A1 | 5 | A operand input 1 |
| B1 | 6 | B operand input 1 |
| CIN | 7 | carry input |
| GND | 8 | ground (0 V) |
| COUT | 9 | carry output |
| S4 | 10 | sum output 4 |
| B4 | 11 | B operand input 4 |
| A4 | 12 | A operand input 4 |
| S3 | 13 | sum output 3 |
| B3 | 14 | A operand input 3 |
| A3 | 15 | B operand input 3 |
| VC | 16 | positive supply voltage |

## 7. Functional description

### 7.1 Function table

Table 4: Function table [1]

| Pins | Input |  |  |  |  |  |  |  |  | Output |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | CIN | A4 | A3 | A2 | A1 | B4 | B3 | B2 | B1 | COUT | S4 | S3 | S2 | S1 |
| Logic levels | L | H | L | H | L | H | L | L | H | H | L | L | H | H |
| Active HIGH [2] | 0 | 1 | 0 | 1 | 0 | 1 | 0 | 0 | 1 | 1 | 0 | 0 | 1 | 1 |
| Active LOW [3] | 1 | 0 | 1 | 0 | 1 | 0 | 1 | 1 | 0 | 0 | 1 | 1 | 0 | 0 |

[1] $\mathrm{H}=\mathrm{HIGH}$ voltage level;
$\mathrm{L}=$ LOW voltage level.
[2] Example for active HIGH: $10+9(0+1010+1001)=19(10011)$.
[3] Example for active LOW: $5+6(1+0101+0110)=12(01100)$.

## 8. Limiting values

Table 5: Limiting values
In accordance with the Absolute Maximum Rating System (IEC 60134). Voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | -0.5 | +7 | V |
| $\mathrm{I}_{\mathrm{IK}}$ | input diode current | $\mathrm{V}_{\mathrm{I}}<-0.5 \mathrm{~V}$ or $\mathrm{V}_{\mathrm{I}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | - | $\pm 20$ | mA |
| $\mathrm{I}_{\mathrm{OK}}$ | output diode current | $\mathrm{V}_{\mathrm{O}}<-0.5 \mathrm{~V}$ or <br> $\mathrm{V}_{\mathrm{O}}>\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | - | $\pm 20$ | mA |
| $\mathrm{I}_{\mathrm{O}}$ | output source or sink <br> current | $\mathrm{V}_{\mathrm{O}}=-0.5 \mathrm{~V}$ to $\mathrm{V}_{\mathrm{CC}}+0.5 \mathrm{~V}$ | - | $\pm 25$ | mA |
| $\mathrm{I}_{\mathrm{CC}}, \mathrm{I}_{\mathrm{GND}}$ | $\mathrm{V}_{\mathrm{CC}}$ or GND current |  | - | $\pm 50$ | mA |
| $\mathrm{~T}_{\text {stg }}$ | storage temperature | -65 | +150 | ${ }^{\circ} \mathrm{C}$ |  |
| $\mathrm{P}_{\text {tot }}$ | power dissipation <br>  <br>  <br>  <br>  <br> DIP16 package <br> SO16, SSOP16 and <br> TSSOP16 packages | $\underline{[1]}-$ | 750 | mW |  |

[1] Above $70^{\circ} \mathrm{C}$ : $\mathrm{P}_{\text {tot }}$ derates linearly with $12 \mathrm{~mW} / \mathrm{K}$.
[2] Above $70^{\circ} \mathrm{C}$ : $\mathrm{P}_{\mathrm{tot}}$ derates linearly with $8 \mathrm{~mW} / \mathrm{K}$.
9. Recommended operating conditions

Table 6: Recommended operating conditions

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{V}_{\mathrm{CC}}$ | supply voltage |  | 2.0 | 5.0 | 6.0 | V |
| $\mathrm{~V}_{\mathrm{I}}$ | input voltage |  | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{V}_{\mathrm{O}}$ | output voltage |  | 0 | - | $\mathrm{V}_{\mathrm{CC}}$ | V |
| $\mathrm{t}_{\mathrm{r}}, \mathrm{t}_{\mathrm{f}}$ | input rise and fall times | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 1000 | ns |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 6.0 | 500 | ns |
|  |  | $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 400 | ns |
| $\mathrm{~T}_{\mathrm{amb}}$ | ambient temperature |  | -40 | - | +125 | ${ }^{\circ} \mathrm{C}$ |

## 10. Static characteristics

Table 7: $\quad$ Static characteristics
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=25^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.5 | 1.2 | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 3.15 | 2.4 | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 4.2 | 3.2 | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | 0.8 | 0.5 | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 2.1 | 1.35 | V |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | - | 2.8 | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.9 | 2.0 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 4.4 | 4.5 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.9 | 6.0 | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.98 | 4.32 | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.48 | 5.81 | - | V |
| $\mathrm{V}_{\mathrm{OL}}$ | LOW-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 0 | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\text {CC }}=4.5 \mathrm{~V}$ | - | 0.15 | 0.26 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 0.16 | 0.26 | V |
| $\mathrm{l}_{\mathrm{LI}}$ | input leakage current | $\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND; $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | $\pm 0.1$ | $\mu \mathrm{A}$ |
| $\mathrm{I}_{\mathrm{CC}}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 8.0 | $\mu \mathrm{A}$ |
| $\mathrm{C}_{1}$ | input capacitance |  | - | 3.5 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 4.4 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 5.9 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.84 | - | - | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.34 | - | - | V |

Table 7: Static characteristics ...continued
At recommended operating conditions; voltages are referenced to GND (ground = 0 V).

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  |  |  |  |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.33 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.33 | V |
| $\mathrm{I}_{\mathrm{LI}}$ | input leakage current | $\mathrm{V}_{1}=\mathrm{V}_{\mathrm{CC}}$ or GND; $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| $I_{\text {cc }}$ | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 80 | $\mu \mathrm{A}$ |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{V}_{\mathrm{IH}}$ | HIGH-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | 1.5 | - | - | V |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | 3.15 | - | - | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 4.2 | - | - | V |
| $\mathrm{V}_{\text {IL }}$ | LOW-level input voltage | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 0.5 | V |
|  |  | $\mathrm{V}_{\text {cC }}=4.5 \mathrm{~V}$ | - | - | 1.35 | V |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | 1.8 | V |
| $\mathrm{V}_{\mathrm{OH}}$ | HIGH-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  | - |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | 1.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 4.4 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-20 \mu \mathrm{~A} ; \mathrm{V}_{C C}=6.0 \mathrm{~V}$ | 5.9 | - | - | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=-4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | 3.7 | - | - | V |
|  |  | $\mathrm{l}_{0}=-5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | 5.2 | - | - | V |
| $\mathrm{V}_{\text {OL }}$ | LOW-level output voltage | $\mathrm{V}_{\text {I }}=\mathrm{V}_{\text {IH }}$ or $\mathrm{V}_{\text {IL }}$ |  | - |  |  |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{l}_{\mathrm{O}}=20 \mu \mathrm{~A} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.1 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=4 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 0.4 | V |
|  |  | $\mathrm{I}_{\mathrm{O}}=5.2 \mathrm{~mA} ; \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 0.4 | V |
| $\mathrm{l}_{\mathrm{LI}}$ | input leakage current | $\mathrm{V}_{1}=\mathrm{V}_{C C}$ or GND; $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | $\pm 1.0$ | $\mu \mathrm{A}$ |
| ICC | quiescent supply current | $\begin{aligned} & \mathrm{V}_{\mathrm{I}}=\mathrm{V}_{\mathrm{CC}} \text { or } \mathrm{GND} ; \mathrm{I}_{\mathrm{O}}=0 \mathrm{~A} ; \\ & \mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V} \end{aligned}$ | - | - | 160 | $\mu \mathrm{A}$ |

## 11. Dynamic characteristics

Table 8: Dynamic characteristics
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 7 .
Symbol Parameter Conditions Min Typ Max Unit
$\mathrm{T}_{\mathrm{amb}}=25^{\circ} \mathrm{C}$
$t_{\text {PHL }}$, $\mathrm{t}_{\text {PLH }}$ propagation delay CIN to S 1
see Figure 6

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 52 | 160 | ns |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 19 | 32 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 15 | 27 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 16 | - | ns |


| propagation delay CIN to S 2 | see Figure 6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 58 | 180 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 21 | 36 | ns |
|  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | 17 | 31 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ |  | 18 | - | ns |


| propagation delay CIN to S3 | see Figure 6 |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ |  | 63 | 195 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ |  | 23 | 39 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 18 | 33 | ns |
|  | $\mathrm{V}_{C C}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 20 | - | ns |
| propagation delay CIN to S4 | see Figure 6 |  |  |  |  |
|  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 74 | 230 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 27 | 46 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 22 | 39 | ns |
|  | $\mathrm{V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 23 | - | ns |

propagation delay An or Bn to Sn see Figure 6

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 69 | 210 | ns |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 25 | 42 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 20 | 36 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 21 | - | ns |

propagation delay CIN to COUT see Figure 6

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 63 | 195 | ns |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 23 | 39 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 18 | 33 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 20 | - | ns |

propagation delay An or Bn to COUT
see Figure 6

| $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | 63 | 195 | ns |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{~V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | 23 | 39 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 18 | 33 | ns |
| $\mathrm{~V}_{\mathrm{CC}}=5.0 \mathrm{~V} ; \mathrm{C}_{\mathrm{L}}=15 \mathrm{pF}$ | - | 20 | - | ns |

Table 8: Dynamic characteristics ...continued
$G N D=0 \mathrm{~V} ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 7 .

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$ | output transition time | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | 19 | 75 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | 7 | 15 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | 6 | 13 | ns |
| $\mathrm{C}_{\text {PD }}$ | power dissipation capacitance | $\mathrm{V}_{\mathrm{I}}=\mathrm{GND}$ to $\mathrm{V}_{\mathrm{CC}}$ | [1] - | 88 | - | pF |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay CIN to S1 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 200 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 40 | ns |
|  |  | $\mathrm{V}_{C C}=6.0 \mathrm{~V}$ | - | - | 34 | ns |
|  | propagation delay CIN to S 2 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 225 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 45 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 38 | ns |
|  | propagation delay CIN to S3 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 245 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 49 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 42 | ns |
|  | propagation delay CIN to S 4 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 290 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 58 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 49 | ns |
|  | propagation delay An or Bn to Sn | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 265 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 53 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 45 | ns |
|  | propagation delay CIN to COUT | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 245 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 49 | ns |
|  |  | $\mathrm{V}_{\text {CC }}=6.0 \mathrm{~V}$ | - | - | 42 | ns |
|  | propagation delay An or Bn to COUT | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 245 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 49 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 42 | ns |
| $\mathrm{t}_{\text {THLL }}, \mathrm{t}_{\text {TLH }}$ | output transition time | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 95 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 19 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 16 | ns |

Table 8: Dynamic characteristics ...continued
$G N D=0 V ; t_{r}=t_{f}=6 \mathrm{~ns} ; C_{L}=50 \mathrm{pF}$; see Figure 7 .

| Symbol | Parameter | Conditions | Min | Typ | Max | Unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{T}_{\text {amb }}=-40^{\circ} \mathrm{C}$ to $+125^{\circ} \mathrm{C}$ |  |  |  |  |  |  |
| $\mathrm{t}_{\text {PHL }}, \mathrm{t}_{\text {PLH }}$ | propagation delay CIN to S 1 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 240 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 48 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 41 | ns |
|  | propagation delay CIN to S 2 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 270 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 54 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 46 | ns |
|  | propagation delay CIN to S 3 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 295 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 59 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 50 | ns |
|  | propagation delay CIN to S 4 | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 345 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 69 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 59 | ns |
|  | propagation delay An or Bn to Sn | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 315 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 63 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 54 | ns |
|  | propagation delay CIN to COUT | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{C C}=2.0 \mathrm{~V}$ | - | - | 295 | ns |
|  |  | $\mathrm{V}_{C C}=4.5 \mathrm{~V}$ | - | - | 59 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 50 | ns |
|  | propagation delay An or Bn to | see Figure 6 |  |  |  |  |
|  | COUT | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 295 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 59 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 50 | ns |
| $\mathrm{t}_{\text {THL }}, \mathrm{t}_{\text {TLH }}$ | output transition time | see Figure 6 |  |  |  |  |
|  |  | $\mathrm{V}_{\mathrm{CC}}=2.0 \mathrm{~V}$ | - | - | 110 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=4.5 \mathrm{~V}$ | - | - | 22 | ns |
|  |  | $\mathrm{V}_{\mathrm{CC}}=6.0 \mathrm{~V}$ | - | - | 19 | ns |

[1] $C_{P D}$ is used to determine the dynamic power dissipation ( $P_{D}$ in $\mu W$ ).
$P_{D}=C_{P D} \times V_{C C}{ }^{2} \times f_{i} \times N+\sum\left(C_{L} \times V_{C C}{ }^{2} \times f_{o}\right)$ where:
$\mathrm{f}_{\mathrm{i}}=$ input frequency in MHz ;
$\mathrm{f}_{\mathrm{o}}=$ output frequency in MHz ;
$\mathrm{C}_{\mathrm{L}}=$ output load capacitance in pF ;
$\mathrm{V}_{\mathrm{CC}}=$ supply voltage in V ;
$\mathrm{N}=$ number of inputs switching;
$\Sigma\left(C_{L} \times V_{C C}{ }^{2} \times f_{0}\right)$ sum of outputs.

## 12. Waveforms


$\mathrm{V}_{\mathrm{M}}=0.5 \times \mathrm{V}_{\mathrm{I}}$.
Fig 6. Waveforms showing the inputs (CIN, An and Bn ) to the outputs ( Sn and COUT) propagation delays and the output transition times


Test data is given in Table 9.
Definitions for test circuit:
$R_{T}=$ Termination resistance should be equal to output impedance $Z_{o}$ of the pulse generator.
$C_{L}=$ Load capacitance including jig and probe capacitance.
Fig 7. Load circuitry for switching times

Table 9: Test data

| Supply | Input | Load |  |
| :--- | :--- | :--- | :--- |
| $\mathbf{V}_{\mathbf{C C}}$ | $\mathbf{V}_{\mathbf{I}}$ | $\mathbf{t}_{\mathbf{r}}, \mathbf{t}_{\mathbf{f}}$ | $\mathbf{C}_{\mathrm{L}}$ |
| 2.0 V | $\mathrm{~V}_{\mathrm{CC}}$ | 6 ns | 50 pF |
| 4.5 V | $\mathrm{~V}_{\mathrm{CC}}$ | 6 ns | 50 pF |
| 6.0 V | $\mathrm{~V}_{\mathrm{CC}}$ | 6 ns | 50 pF |
| 5.0 V | $\mathrm{~V}_{\mathrm{CC}}$ | 6 ns | 15 pF |

## 13. Application information

Figure 8 shows a 3-bit adder using the 74 HC 283 . Trying the operand inputs of the fourth adder (A4 and B4) LOW makes S4 dependent on, and equal to, the carry from the third adder.

Figure 9, based on the same principle, shows a method of dividing the 74HC283 into a 2-bit and 1-bit adder. The third stage adder (A3, B3 and S3) is used simply as means of transferring the carry into the fourth stage (via A3 and B3) and transferring the carry from
the second stage on S3. As long as A3 and B3 are the same, HIGH or LOW, they do not influence S3. Similarly, when A3 and B3 are the same, the carry into the third stage does not influence the carry out of the third stage.


Fig 8. 3-bit adder


Fig 9. 2-bit and 1-bit adder

Figure 10 shows a method of implementing a 5 -input encoder, where the inputs are equally weighted. The outputs S1, S2 and S3 produce a binary number equal to the number inputs (l1 to 15 ) that are HIGH.

Figure 11 shows a method of implementing a 5-input majority gate. When three or more inputs (I1 to I 5 ) are HIGH , the output M5 is HIGH.


Fig 10. 5-input encoder


Fig 11. 5-input majority gate

## 14. Package outline



DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | A max. | $\mathbf{A}_{1}$ min. | $A_{2}$ <br> max. | b | $\mathrm{b}_{1}$ | $\mathrm{b}_{2}$ | C | $D^{(1)}$ | $E^{(1)}$ | e | $\mathbf{e}_{1}$ | L | $\mathrm{M}_{\mathbf{E}}$ | $\mathbf{M}_{\mathbf{H}}$ | W | $\begin{gathered} Z^{(1)} \\ \max . \end{gathered}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 4.2 | 0.51 | 3.2 | $\begin{aligned} & 1.73 \\ & 1.30 \end{aligned}$ | $\begin{aligned} & 0.53 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 1.25 \\ & 0.85 \end{aligned}$ | $\begin{aligned} & 0.36 \\ & 0.23 \end{aligned}$ | $\begin{aligned} & 19.50 \\ & 18.55 \end{aligned}$ | $\begin{aligned} & 6.48 \\ & 6.20 \end{aligned}$ | 2.54 | 7.62 | $\begin{aligned} & 3.60 \\ & 3.05 \end{aligned}$ | $\begin{aligned} & 8.25 \\ & 7.80 \end{aligned}$ | $\begin{gathered} 10.0 \\ 8.3 \end{gathered}$ | 0.254 | 0.76 |
| inches | 0.17 | 0.02 | 0.13 | $\begin{aligned} & 0.068 \\ & 0.051 \end{aligned}$ | $\begin{aligned} & 0.021 \\ & 0.015 \end{aligned}$ | $\begin{aligned} & 0.049 \\ & 0.033 \end{aligned}$ | $\begin{aligned} & 0.014 \\ & 0.009 \end{aligned}$ | $\begin{aligned} & 0.77 \\ & 0.73 \end{aligned}$ | $\begin{aligned} & 0.26 \\ & 0.24 \end{aligned}$ | 0.1 | 0.3 | $\begin{aligned} & 0.14 \\ & 0.12 \end{aligned}$ | $\begin{aligned} & 0.32 \\ & 0.31 \end{aligned}$ | $\begin{aligned} & 0.39 \\ & 0.33 \end{aligned}$ | 0.01 | 0.03 |

Note

1. Plastic or metal protrusions of 0.25 mm ( 0.01 inch ) maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :--- | :--- | :--- | :--- | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |  |
| SOT38-4 |  |  |  |  | - |  |

Fig 12. Package outline SOT38-4 (DIP16)


DIMENSIONS (inch dimensions are derived from the original mm dimensions)

| UNIT | $\begin{gathered} \mathrm{A} \\ \max . \end{gathered}$ | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $\mathrm{Z}^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 1.75 | $\begin{aligned} & 0.25 \\ & 0.10 \\ & \hline \end{aligned}$ | $\begin{aligned} & 1.45 \\ & 1.25 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.49 \\ & 0.36 \end{aligned}$ | $\begin{aligned} & 0.25 \\ & 0.19 \end{aligned}$ | $\begin{gathered} 10.0 \\ 9.8 \end{gathered}$ | $\begin{aligned} & 4.0 \\ & 3.8 \end{aligned}$ | 1.27 | $\begin{aligned} & 6.2 \\ & 5.8 \end{aligned}$ | 1.05 | $\begin{aligned} & 1.0 \\ & 0.4 \end{aligned}$ | $\begin{aligned} & 0.7 \\ & 0.6 \end{aligned}$ | 0.25 | 0.25 | 0.1 | $\begin{aligned} & 0.7 \\ & 0.3 \\ & \hline \end{aligned}$ | $\begin{aligned} & 8^{\circ} \\ & 0^{\circ} \end{aligned}$ |
| inches | 0.069 | $\begin{array}{\|l\|} \hline 0.010 \\ 0.004 \\ \hline \end{array}$ | $\begin{aligned} & 0.057 \\ & 0.049 \end{aligned}$ | 0.01 | $\begin{aligned} & 0.019 \\ & 0.014 \end{aligned}$ | $\begin{array}{\|l\|} \hline 0.0100 \\ 0.0075 \end{array}$ | $\begin{aligned} & 0.39 \\ & 0.38 \end{aligned}$ | $\begin{aligned} & 0.16 \\ & 0.15 \end{aligned}$ | 0.05 | $\begin{aligned} & 0.244 \\ & 0.228 \end{aligned}$ | 0.041 | $\begin{aligned} & 0.039 \\ & 0.016 \end{aligned}$ | $\begin{aligned} & 0.028 \\ & 0.020 \end{aligned}$ | 0.01 | 0.01 | 0.004 | $\begin{aligned} & 0.028 \\ & 0.012 \end{aligned}$ |  |

Note

1. Plastic or metal protrusions of 0.15 mm ( 0.006 inch ) maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |  |
| SOT109-1 | $076 E 07$ | MS-012 |  |  | - |  |

Fig 13. Package outline SOT109-1 (SO16)
939775013811


DIMENSIONS (mm are the original dimensions)

| UNIT | A max. | $\mathrm{A}_{1}$ | $\mathrm{A}_{2}$ | $\mathrm{A}_{3}$ | $\mathrm{b}_{\mathrm{p}}$ | c | $D^{(1)}$ | $E^{(1)}$ | e | $\mathrm{H}_{\mathrm{E}}$ | L | $L_{p}$ | Q | v | w | y | $Z^{(1)}$ | $\theta$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| mm | 2 | $\begin{aligned} & 0.21 \\ & 0.05 \end{aligned}$ | $\begin{aligned} & 1.80 \\ & 1.65 \end{aligned}$ | 0.25 | $\begin{aligned} & 0.38 \\ & 0.25 \end{aligned}$ | $\begin{aligned} & 0.20 \\ & 0.09 \end{aligned}$ | $\begin{aligned} & \hline 6.4 \\ & 6.0 \end{aligned}$ | $\begin{aligned} & \hline 5.4 \\ & 5.2 \end{aligned}$ | 0.65 | $\begin{aligned} & 7.9 \\ & 7.6 \end{aligned}$ | 1.25 | $\begin{aligned} & 1.03 \\ & 0.63 \end{aligned}$ | $\begin{aligned} & 0.9 \\ & 0.7 \end{aligned}$ | 0.2 | 0.13 | 0.1 | $\begin{aligned} & 1.00 \\ & 0.55 \end{aligned}$ | $8^{\circ}$ 0 |

Note

1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.

| OUTLINE VERSION | REFERENCES |  |  | EUROPEAN PROJECTION | ISSUE DATE |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  |
| SOT338-1 |  | MO-150 |  | ¢ (¢) | $\begin{aligned} & -99-12-27 \\ & 03-02-19 \end{aligned}$ |

Fig 14. Package outline SOT338-1 (SSOP16)

DIMENSIONS (mm are the original dimensions)

| UNIT | $\mathbf{A}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{m a x}$. |  | $\mathbf{A}_{\mathbf{1}} \quad \mathbf{A}_{\mathbf{2}} \quad \mathbf{A}_{\mathbf{3}} \quad \mathbf{b}_{\mathbf{p}} \quad \mathbf{c}$

Notes

1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.

| OUTLINE <br> VERSION | REFERENCES |  |  |  | EUROPEAN <br> PROJECTION | ISSUE DATE |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
|  | IEC | JEDEC | JEITA |  |  | $-99-12-27$ |
| SOT403-1 |  | MO-153 |  |  | $03-18$ |  |

Fig 15. Package outline SOT403-1 (TSSOP16)

## 15. Revision history

Table 10: Revision history

| Document ID | Release date | Data sheet status | Change notice | Doc. number | Supersedes |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 74HC283_3 | 20041111 | Product data sheet |  | 939775013811 | 74HC_HCT283_CNV_2 |
| Modifications: | - The format of this data sheet has been redesigned to comply with the current presentation and information standard of Philips Semiconductors. <br> - Removed type number 74HCT283. <br> - Inserted family specification. |  |  |  |  |
| 74HC_HCT283_CNV_2 | 19970828 | Product specification | - | - | 74HC_HCT283_1 |
| 74HC_HCT283_1 | 19901201 | Product specification | - | - |  |

## 16. Data sheet status

| Level | Data sheet status $\underline{[1]}$ | Product status $\underline{[2]}$ [3] | Definition <br> I |
| :--- | :--- | :--- | :--- |
| Objective data | Development | This data sheet contains data from the objective specification for product development. Philips <br> Semiconductors reserves the right to change the specification in any manner without notice. |  |
| II | Preliminary data | Qualification | This data sheet contains data from the preliminary specification. Supplementary data will be published <br> at a later date. Philips Semiconductors reserves the right to change the specification without notice, in <br> order to improve the design and supply the best possible product. |
| III | Product data | Production | This data sheet contains data from the product specification. Philips Semiconductors reserves the <br> right to make changes at any time in order to improve the design, manufacturing and supply. Relevant <br> changes will be communicated via a Customer Product/Process Change Notification (CPCN). |

[1] Please consult the most recently issued data sheet before initiating or completing a design.
[2] The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.
[3] For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.

## 17. Definitions

Short-form specification - The data in a short-form specification is extracted from a full data sheet with the same type number and title. For detailed information see the relevant data sheet or data handbook.

Limiting values definition - Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 60134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information - Applications that are described herein for any of these products are for illustrative purposes only. Philips Semiconductors make no representation or warranty that such applications will be suitable for the specified use without further testing or modification.

## 18. Disclaimers

Life support - These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips Semiconductors customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips Semiconductors for any damages resulting from such application.

Right to make changes - Philips Semiconductors reserves the right to make changes in the products - including circuits, standard cells, and/or software - described or contained herein in order to improve design and/or performance. When the product is in full production (status 'Production'), relevant changes will be communicated via a Customer Product/Process Change Notification (CPCN). Philips Semiconductors assumes no responsibility or liability for the use of any of these products, conveys no license or title under any patent, copyright, or mask work right to these products, and makes no representations or warranties that these products are free from patent, copyright, or mask work right infringement, unless otherwise specified.

## 19. Contact information

## 20. Contents

1 General description ..... 1
2 Features ..... 1
3 Quick reference data ..... 2
4 Ordering information ..... 2
5 Functional diagram ..... 3
6 Pinning information ..... 4
6.1 Pinning ..... 4
6.2 Pin description ..... 5
7 Functional description ..... 5
7.1 Function table ..... 5
8 Limiting values ..... 6
9 Recommended operating conditions. ..... 6
10 Static characteristics ..... 7
11 Dynamic characteristics ..... 9
12 Waveforms ..... 12
13 Application information ..... 12
14 Package outline ..... 14
15 Revision history ..... 18
16 Data sheet status ..... 19
17 Definitions ..... 19
18 Disclaimers ..... 19
19 Contact information ..... 19

