

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

Octal 3-State Non-Inverting Transparent Latch

High-Performance Silicon-Gate CMOS

The 74HC373 is identical in pinout to the LS373. The device inputs are compatible with standard CMOS outputs; with pullup resistors, they are compatible with LSTTL outputs.

These latches appear transparent to data (i.e., the outputs change asynchronously) when Latch Enable is high. When Latch Enable goes low, data meeting the setup and hold time becomes latched.

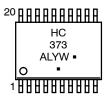
The Output Enable input does not affect the state of the latches, but when Output Enable is high, all device outputs are forced to the high-impedance state. Thus, data may be latched even when the outputs are not enabled.

The HC373A is identical in function to the HC573A which has the data inputs on the opposite side of the package from the outputs to facilitate PC board layout.

The HC373A is the non-inverting version of the HC533A.

Features

- Output Drive Capability: 15 LSTTL Loads
- Outputs Directly Interface to CMOS, NMOS and TTL
- Operating Voltage Range: 2.0 to 6.0 V
- Low Input Current: 1.0 μA
- High Noise Immunity Characteristic of CMOS Devices
- In Compliance with the JEDEC Standard No. 7.0 A Requirements
- ESD Performance: HBM > 2000 V; Machine Model > 200 V
- Chip Complexity: 186 FETs or 46.5 Equivalent Gates
- This is a Pb-Free Device


ON Semiconductor®

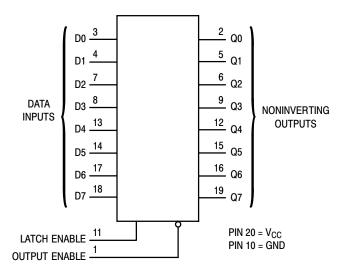
http://onsemi.com

MARKING DIAGRAM

TSSOP-20 DT SUFFIX CASE 948E

HC373 = Specific Device Code A = Assembly Location

L = Wafer Lot Y = Year W = Work Week • Pb-Free Package


(Note: Microdot may be in either location)

ORDERING INFORMATION

See detailed ordering and shipping information in the package dimensions section on page 3 of this data sheet.

1

LOGIC DIAGRAM

Design Criteria	Value	Units
Internal Gate Count*	46.5	ea
Internal Gate Propagation Delay	1.5	ns
Internal Gate Power Dissipation	5.0	μW
Speed Power Product	0.0075	рJ

^{*}Equivalent to a two-input NAND gate.

PIN ASSIGNMENT

OUTPUT C	1●	20] v _{cc}
Q0 [2	19] Q7
D0 [3	18] D7
D1 [4	17] D6
Q1 [5	16] Q6
Q2 [6	15] Q5
D2 [7	14] D5
D3 [8	13] D4
Q3 [9	12] Q4
GND [10	11	LATCH ENABLE
			· LINADLL

FUNCTION TABLE

	Output							
Output								
Enable	Enable	D	Q					
L	Н	Н	Н					
L	Н	L	L					
L	L	Х	No Change					
н	X	l x	Z					

X = Don't Care

Z = High Impedance

MAXIMUM RATINGS

Symbol	Parameter	Value	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)	- 0.5 to + 7.0	V
V _{in}	DC Input Voltage (Referenced to GND)	- 0.5 to V _{CC} + 0.5	V
V _{out}	DC Output Voltage (Referenced to GND)	-0.5 to V_{CC} + 0.5	V
l _{in}	DC Input Current, per Pin	±20	mA
l _{out}	DC Output Current, per Pin	±35	mA
I _{CC}	DC Supply Current, V _{CC} and GND Pins	±75	mA
P_{D}	Power Dissipation in Still Air, TSSOP Package†	450	mW
T _{stg}	Storage Temperature	- 65 to + 150	°C
TL	Lead Temperature, 1 mm from Case for 10 Seconds (TSSOP Package)	260	°C

This device contains protection circuitry to guard against damage due to high static voltages or electric fields. However, precautions must be taken to avoid applications of any voltage higher than maximum rated voltages to this high–impedance circuit. For proper operation, V_{in} and V_{out} should be constrained to the range GND \leq (V_{in} or V_{out}) \leq V_{CC} .

Unused inputs must always be tied to an appropriate logic voltage level (e.g., either GND or V_{CC}). Unused outputs must be left open.

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter		Min	Max	Unit
V _{CC}	DC Supply Voltage (Referenced to GND)			6.0	V
V _{in} , V _{out}	DC Input Voltage, Output Voltage (Referenced to GN	DC Input Voltage, Output Voltage (Referenced to GND)			V
T _A	Operating Temperature, All Package Types		- 55	+ 125	°C
t _r , t _f	Input Rise and Fall Time $V_{CC} = 2.0$ (Figure 1) $V_{CC} = 4.0$ $V_{CC} = 6.0$	5 V	0 0 0	1000 500 400	ns

ORDERING INFORMATION

Device	Package	Shipping [†]
74HC373DTR2G	TSSOP-20*	2500 Units / Reel

[†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D.

[†]Derating — TSSOP Package: - 6.1 mW/°C from 65° to 125°C

For high frequency or heavy load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

^{*}This package is inherently Pb-Free.

DC ELECTRICAL CHARACTERISTICS (Voltages Referenced to GND)

				Guar	anteed Lim	nit	
Symbol	Parameter	Test Conditions	V _{CC} (V)	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
V _{IH}	Minimum High-Level Input	$V_{out} = V_{CC} - 0.1 \text{ V}$	2.0	1.5	1.5	1.5	V
	Voltage	$ I_{out} \leq 20 \mu A$	3.0	2.1	2.1	2.1	
			4.5	3.15	3.15	3.15	
			6.0	4.2	4.2	4.2	
V _{IL}	Maximum Low-Level Input	V _{out} = 0.1 V	2.0	0.5	0.5	0.5	V
	Voltage	$ I_{out} \leq 20 \mu A$	3.0	0.9	0.9	0.9	
			4.5	1.35	1.35	1.35	
			6.0	1.8	1.8	1.8	
V _{OH}	Minimum High-Level Output	V _{in} = V _{IH}	2.0	1.9	1.9	1.9	V
	Voltage	$ I_{out} \leq 20 \mu A$	4.5	4.4	4.4	4.4	
			6.0	5.9	5.9	5.9	
		$V_{in} = V_{IH}$ $ I_{out} \le 2.4 \text{ mA}$	3.0	2.48	2.34	2.2	
		$ I_{\text{out}} \leq 6.0 \text{ mA}$	4.5	3.98	3.84	3.7	
		$ I_{out} \le 7.8 \text{ mA}$	6.0	5.48	5.34	5.2	
V _{OL}	Maximum Low-Level Output	$V_{in} = V_{IL}$	2.0	0.1	0.1	0.1	V
	Voltage	$ I_{out} \le 20 \mu A$	4.5	0.1	0.1	0.1	
			6.0	0.1	0.1	0.1	
		$V_{in} = V_{IL}$ $ I_{out} \le 2.4 \text{ mA}$	3.0	0.26	0.33	0.4	
		$ I_{out} \leq 6.0 \text{ mA}$	4.5	0.26	0.33	0.4	
		$ I_{out} \le 7.8 \text{ mA}$	6.0	0.26	0.33	0.4	
l _{in}	Maximum Input Leakage Current	V _{in} = V _{CC} or GND	6.0	±0.1	±1.0	±1.0	μΑ
l _{OZ}	Maximum Three-State Leakage Current	Output in High-Impedance State $V_{in} = V_{II} \text{ or } V_{IH}$	6.0	±0.5	±5.0	±10	μΑ
		V _{out} = V _{CC} or GND					
Icc	Maximum Quiescent Supply Current (per Package)	$V_{in} = V_{CC}$ or GND $I_{out} = 0 \mu A$	6.0	4.0	40	40	μΑ

NOTE: Information on typical parametric values can be found in Chapter 2 of the ON Semiconductor High–Speed CMOS Data Book (DL129/D).

AC ELECTRICAL CHARACTERISTICS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

		V _{CC}	Guaranteed Limit		it	
Symbol	Parameter	(V)	– 55 to 25°C	≤ 85°C	≤ 125°C	Unit
t _{PLH}	Maximum Propagation Delay, Input D to Q	2.0	125	155	190	ns
t _{PHL}	(Figures 1 and 5)	3.0	80	110	130	
		4.5	25	31	38	
		6.0	21	26	32	
t _{PLH}	Maximum Propagation Delay, Latch Enable to Q	2.0	140	175	210	ns
t _{PHL}	(Figures 2 and 5)	3.0	90	120	140	
		4.5	28	35	42	
		6.0	24	30	36	
t _{PLZ}	Maximum Propagation Delay, Output Enable to Q	2.0	150	190	225	ns
t _{PHZ}	(Figures 3 and 6)	3.0	100	125	150	
		4.5	30	38	45	
		6.0	26	33	38	
t _{PZL}	Maximum Propagation Delay, Output Enable to Q	2.0	150	190	225	ns
t _{PZH}	(Figures 3 and 6)	3.0	100	125	150	
		4.5	30	38	45	
		6.0	26	33	38	
t _{TLH}	Maximum Output Transition Time, Any Output	2.0	60	75	90	ns
t _{THL}	(Figures 1 and 5)	3.0	23	27	32	
		4.5	12	15	18	
		6.0	10	13	15	
C _{in}	Maximum Input Capacitance		10	10	10	pF
C _{out}	Maximum Three-State Output Capacitance (Output in High-Impedance State)		15	15	15	pF

NOTE: For propagation delays with loads other than 50 pF, and information on typical parametric values, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

		Typical @ 25°C, V _{CC} = 5.0 V	
C_{PD}	Power Dissipation Capacitance (Per Enabled Output)*	36	pF

^{*}Used to determine the no-load dynamic power consumption: P_D = C_{PD} V_{CC}²f + I_{CC} V_{CC}. For load considerations, see Chapter 2 of the ON Semiconductor High-Speed CMOS Data Book (DL129/D).

TIMING REQUIREMENTS (C_L = 50 pF, Input t_r = t_f = 6.0 ns)

				Guaranteed Limit							
			v _{cc}	– 55 to 25°C		5 to 25°C ≤ 85°C		5°C ≤ 85°C ≤ 125°C		25°C	
Symbol	Parameter	Figure	(V)	Min	Max	Min	Max	Min	Max	Unit	
t _{su}	Minimum Setup Time, Input D to Latch Enable	4	2.0 3.0 4.5 6.0	25 20 5.0 5.0		30 25 6.0 6.0		40 30 8.0 7.0		ns	
t _h	Minimum Hold Time, Latch Enable to Input D	4	2.0 3.0 4.5 6.0	5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		5.0 5.0 5.0 5.0		ns	
t _w	Minimum Pulse Width, Latch Enable	2	2.0 3.0 4.5 6.0	60 23 12 10		75 27 15 13		90 32 18 15		ns	
t _r , t _f	Maximum Input Rise and Fall Times	1	2.0 3.0 4.5 6.0		1000 800 500 400		1000 800 500 400		1000 800 500 400	ns	

SWITCHING WAVEFORMS

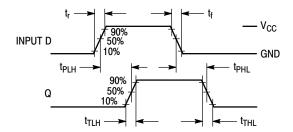


Figure 1.

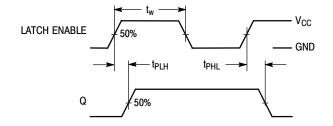


Figure 2.

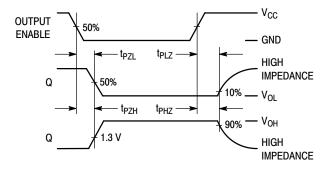


Figure 3.

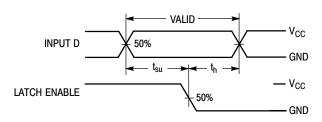
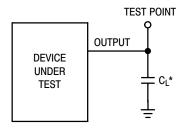
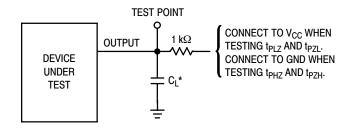




Figure 4.

TEST CIRCUITS

*Includes all probe and jig capacitance

Figure 5.

Figure 6.

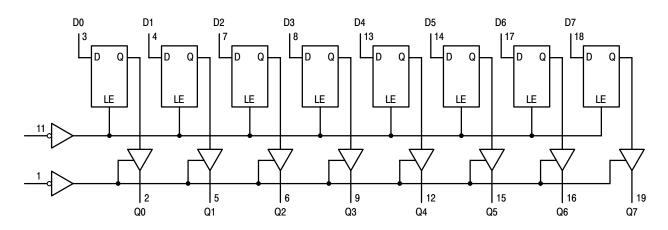
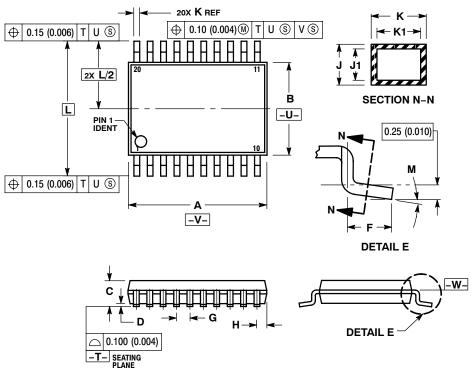



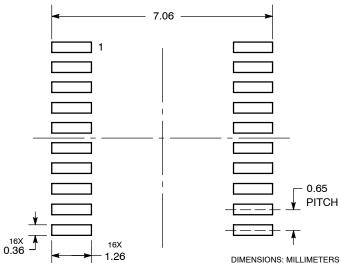
Figure 7. EXPANDED LOGIC DIAGRAM

^{*}Includes all probe and jig capacitance

PACKAGE DIMENSIONS

TSSOP-20 CASE 948E-02 **ISSUE C**

NOTES:


- OTES:

 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.
 2. CONTROLLING DIMENSION:
 MILLIMETER.
 3. DIMENSION A DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH OR GATE BURRS SHALL NOT EXCEED 0.15 (0.006) PER SIDE.
 4. DIMENSION B DOES NOT INCLUDE INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION. INTERLEAD FLASH OR PROTRUSION.
- SHALL NOT EXCEED 0.25 (0.010) PER SIDE.
 5. DIMENSION K DOES NOT INCLUDE
 DAMBAR PROTRUSION. ALLOWABLE
 DAMBAR PROTRUSION SHALL BE 0.08 (0.003) TOTAL IN EXCESS OF THE K DIMENSION AT MAXIMUM MATERIAL
- CONDITION.

 6. TERMINAL NUMBERS ARE SHOWN FOR REFERENCE ONLY.
- 7. DIMENSION A AND B ARE TO BE DETERMINED AT DATUM PLANE -W-.

	MILLIN	IETERS	INCHES		
DIM	MIN	MAX	MIN	MAX	
Α	6.40	6.60	0.252	0.260	
В	4.30	4.50	0.169	0.177	
С		1.20		0.047	
D	0.05	0.15	0.002	0.006	
F	0.50	0.75	0.020	0.030	
G	0.65	BSC	0.026	BSC	
Н	0.27	0.37	0.011	0.015	
J	0.09	0.20	0.004	0.008	
J1	0.09	0.16	0.004	0.006	
K	0.19	0.30	0.007	0.012	
K1	0.19	0.25	0.007	0.010	
L	6.40		0.252 BSC		
М	0°	8°	0°	8°	

SOLDERING FOOTPRINT*

*For additional information on our Pb-Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

ON Semiconductor and were registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights or the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.

PUBLICATION ORDERING INFORMATION

LITERATURE FULFILLMENT:

Literature Distribution Center for ON Semiconductor P.O. Box 5163, Denver, Colorado 80217 USA Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Fax: 303-675-2176 or 800-344-3867 Toll Free USA/Canada Email: orderlit@onsemi.com N. American Technical Support: 800–282–9855 Toll Free USA/Canada
Europe, Middle East and Africa Technical Support: Phone: 421 33 790 2910
Japan Customer Focus Center
Phone: 81–3–5773–3850

ON Semiconductor Website: www.onsemi.com

Order Literature: http://www.onsemi.com/orderlit

For additional information, please contact your local Sales Representative