

Chipsmall Limited consists of a professional team with an average of over 10 year of expertise in the distribution of electronic components. Based in Hongkong, we have already established firm and mutual-benefit business relationships with customers from, Europe, America and south Asia, supplying obsolete and hard-to-find components to meet their specific needs.

With the principle of "Quality Parts, Customers Priority, Honest Operation, and Considerate Service", our business mainly focus on the distribution of electronic components. Line cards we deal with include Microchip, ALPS, ROHM, Xilinx, Pulse, ON, Everlight and Freescale. Main products comprise IC, Modules, Potentiometer, IC Socket, Relay, Connector. Our parts cover such applications as commercial, industrial, and automotives areas.

We are looking forward to setting up business relationship with you and hope to provide you with the best service and solution. Let us make a better world for our industry!

Contact us

Tel: +86-755-8981 8866 Fax: +86-755-8427 6832

Email & Skype: info@chipsmall.com Web: www.chipsmall.com

Address: A1208, Overseas Decoration Building, #122 Zhenhua RD., Futian, Shenzhen, China

INTEGRATED CIRCUITS

DATA SHEET

For a complete data sheet, please also download:

- The IC06 74HC/HCT/HCU/HCMOS Logic Family Specifications
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Information
- The IC06 74HC/HCT/HCU/HCMOS Logic Package Outlines

74HC/HCT377

Octal D-type flip-flop with data enable; positive-edge trigger

Product specification
File under Integrated Circuits, IC06

December 1990

Octal D-type flip-flop with data enable; positive-edge trigger

74HC/HCT377

FEATURES

- Ideal for addressable register applications
- Data enable for address and data synchronization applications
- Eight positive-edge triggered D-type flip-flops
- See "273" for master reset version
- See "373" for transparent latch version
- See "374" for 3-state version
- · Output capability: standard
- I_{CC} category: MSI

GENERAL DESCRIPTION

The 74HC/HCT377 are high-speed Si-gate CMOS devices and are pin compatible with low power Schottky TTL (LSTTL). They are specified in compliance with JEDEC standard no. 7A.

The 74HC/HCT377 have eight edge-triggered, D-type flip-flops with individual D inputs and Q outputs. A common clock (CP) input loads all flip-flops simultaneously when the data enable (\overline{E}) is LOW. The state of each D input, one set-up time before the LOW-to-HIGH clock transition, is transferred to the corresponding output (Q_n) of the flip-flop.

The \overline{E} input must be stable only one set-up time prior to the LOW-to-HIGH transition for predictable operation.

QUICK REFERENCE DATA

 $GND = 0 V; T_{amb} = 25 °C; t_r = t_f = 6 ns$

SYMBOL	PARAMETER	CONDITIONS	TYP	UNIT	
STWIBOL	PARAMETER	CONDITIONS	нс	нст	UNIT
t _{PHL} / t _{PLH}	propagation delay CP to Q _n	C _L = 15 pF; V _{CC} = 5 V	13	14	ns
f _{max}	maximum clock frequency		77	53	MHz
C _I	input capacitance		3.5	3.5	pF
C _{PD}	power dissipation capacitance per flip-flop	notes 1 and 2	20	20	pF

Notes

1. C_{PD} is used to determine the dynamic power dissipation (P_D in μW):

 $P_D = C_{PD} \times V_{CC}^2 \times f_i + \sum (C_L \times V_{CC}^2 \times f_o)$ where:

f_i = input frequency in MHz

f_o = output frequency in MHz

 $\sum (C_L \times V_{CC}^2 \times f_0) = \text{sum of outputs}$

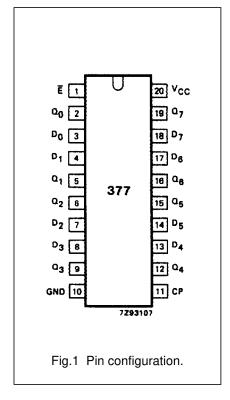
C_L = output load capacitance in pF

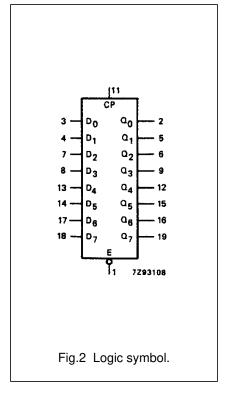
V_{CC} = supply voltage in V

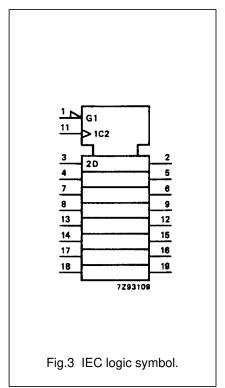
2. For HC the condition is $V_1 = GND$ to V_{CC}

For HCT the condition is $V_I = GND$ to $V_{CC} - 1.5 \text{ V}$

ORDERING INFORMATION

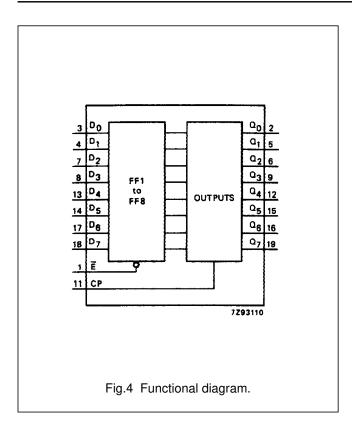

See "74HC/HCT/HCU/HCMOS Logic Package Information".


Octal D-type flip-flop with data enable; positive-edge trigger


74HC/HCT377

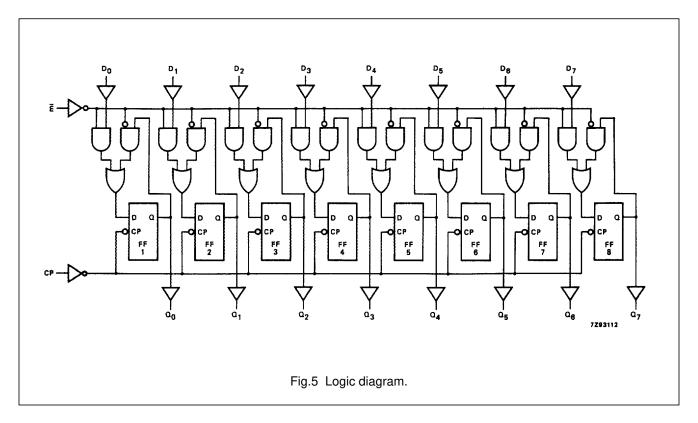
PIN DESCRIPTION

PIN NO.	SYMBOL	NAME AND FUNCTION
1	Ē	data enable input (active LOW)
2, 5, 6, 9, 12, 15, 16, 19	Q ₀ to Q ₇	flip-flop outputs
3, 4, 7, 8, 13, 14, 17, 18	D ₀ to D ₇	data inputs
10	GND	ground (0 V)
11	CP	clock input (LOW-to-HIGH, edge-triggered)
20	V _{CC}	positive supply voltage



Octal D-type flip-flop with data enable; positive-edge trigger

74HC/HCT377



FUNCTION TABLE

OPERATING	I	NPUTS	OUTPUTS		
MODES	СР	Ē	D _n	Q _n	
load "1"	1	I	h	Н	
load "0"	1	I	I	L	
hold (do nothing)	1	h	Х	no change	
	Х	Н	X	no change	

Notes

- 1. H = HIGH voltage level
 - h = HIGH voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - L = LOW voltage level
 - I = LOW voltage level one set-up time prior to the LOW-to-HIGH CP transition
 - ↑ = LOW-to-HIGH CP transition
 - X = don't care

Octal D-type flip-flop with data enable; positive-edge trigger

74HC/HCT377

DC CHARACTERISTICS FOR 74HC

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

AC CHARACTERISTICS FOR 74HC

 $GND = 0 V; t_r = t_f = 6 ns; C_L = 50 pF$

	PARAMETER		T _{amb} (°C)								TEST CONDITIONS	
OVMBOL			74HC								WAVEFORMO	
SYMBOL			+25			-40 to +85		-40 to +125		V _{CC}	WAVEFORMS	
		min.	typ.	max.	min.	max.	min.	max.		(*)		
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		44 16 13	160 32 27		200 40 34		240 48 41	ns	2.0 4.5 6.0	Fig.6	
t _{THL} / t _{TLH}	output transition time		19 7 6	75 15 13		95 19 16		110 22 19	ns	2.0 4.5 6.0	Fig.6	
t _W	clock pulse width HIGH or LOW	80 16 14	14 5 4		100 20 17		120 24 20		ns	2.0 4.5 6.0	Fig.6	
t _{su}	set-up time D _n to CP	60 12 10	14 5 4		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7	
t _{su}	set-up time E to CP	60 12 10	6 2 2		75 15 13		90 18 15		ns	2.0 4.5 6.0	Fig.7	
t _h	hold time D _n to CP	3 3 3	-8 -3 -2		3 3 3		3 3 3		ns	2.0 4.5 6.0	Fig.7	
t _h	hold time E to CP	4 4 4	-3 -1 -1		4 4 4		4 4 4		ns	2.0 4.5 6.0	Fig.7	
f _{max}	maximum clock pulse frequency	6 30 35	23 70 83		5 24 28		4 20 24		MHz	2.0 4.5 6.0	Fig.6	

Octal D-type flip-flop with data enable; positive-edge trigger

74HC/HCT377

DC CHARACTERISTICS FOR 74HCT

For the DC characteristics see "74HC/HCT/HCU/HCMOS Logic Family Specifications".

Output capability: standard

I_{CC} category: MSI

Note to HCT types

The value of additional quiescent supply current (ΔI_{CC}) for a unit load of 1 is given in the family specifications. To determine ΔI_{CC} per input, multiply this value by the unit load coefficient shown in the table below.

INPUT	UNIT LOAD COEFFICIENT							
Ē	1.50							
CP	0.50							
D _n	0.20							

AC CHARACTERISTICS FOR 74HCT

 $GND=0\ V;\, t_r=t_f=6\ ns;\, C_L=50\ pF$

	PARAMETER		T _{amb} (°C)							TEST CONDITIONS	
SYMBOL			74HCT								WAVEFORMS
		+25			-40 to +85		-40 to +125		UNIT	V _{CC} (V)	WAVEFORMS
		min.	typ.	max.	min.	max.	min.	max.		(•,	
t _{PHL} / t _{PLH}	propagation delay CP to Q _n		17	32		40		48	ns	4.5	Fig.6
t _{THL} / t _{TLH}	output transition time		7	15		19		22	ns	4.5	Fig.6
t _W	clock pulse width HIGH or LOW	20	8		25		30		ns	4.5	Fig.6
t _{su}	set-up time D _n to CP	12	4		15		18		ns	4.5	Fig.7
t _{su}	set-up time E to CP	22	12		28		33		ns	4.5	Fig.7
t _h	hold time D _n to CP	2	-4		2		2		ns	4.5	Fig.7
t _h	hold time E to CP	3	-2		3		3		ns	4.5	Fig.7
f _{max}	maximum clock pulse frequency	27	48		22		18		MHz	4.5	Fig.6

Octal D-type flip-flop with data enable; positive-edge trigger

74HC/HCT377

AC WAVEFORMS

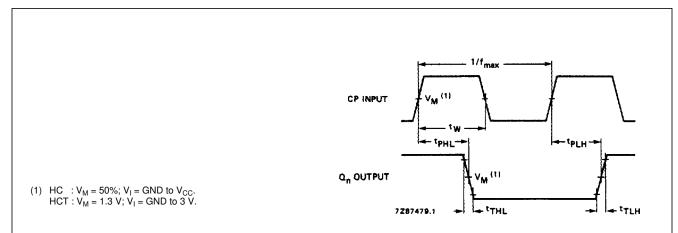


Fig.6 Waveforms showing the clock (CP) to output (Q_n) propagation delays, the clock pulse width, output transition times and the maximum clock pulse frequency.

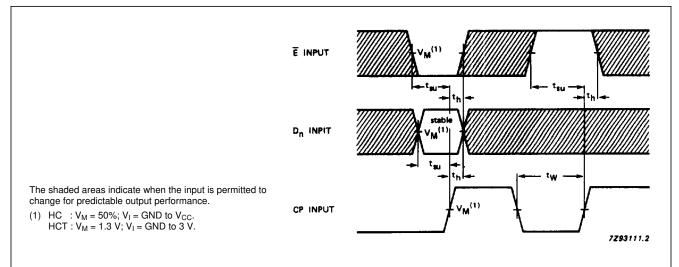


Fig.7 Waveforms showing the data set-up and hold times from the data input (D_n) and from the data enable input (\overline{E}) to the clock (CP).

PACKAGE OUTLINES

See "74HC/HCT/HCU/HCMOS Logic Package Outlines".